22 resultados para Aprismatic layer
Resumo:
The aim of the present study was to evaluate the efficacy of QMiX, SmearClear, and 17% EDTA for the debris and smear layer removal from the root canal and its effects on the push-out bond strength of an epoxy-based sealer by scanning electron microscopy (SEM). Forty extracted human canines (n = 10) were assigned to the following final rinse protocols: G1-distilled water (control), G2–17% EDTA, G3-SmearClear, and G4-QMiX. The specimens were submitted to a SEM analysis to evaluate the presence of debris and smear layer, respectively, in the apical or cervical segments. In sequence, forty extracted human maxillary canines with the root canals instrumented were divided into four groups (n = 10) similar to the SEM analysis study. After the filling with AH Plus, the roots were transversally sectioned to obtain dentinal slices. The specimens were submitted to a push-out bond strength test using an electromechanical testing machine. The statistical analysis for the SEM and push-out bond strength studies were performed using the Kruskal–Wallis and Dunn tests (α = 5%). There was no difference among the G2, G3, and G4 efficacy in removing the debris and smear layer (P > 0.05). The efficacy of these groups was superior to the control group. The push-out bond strength values of G2, G3, and G4 were superior to the control group. The ability to remove the debris and smear layer by SmearClear and QMiX was as effective as the 17% EDTA. The final rinse with these solutions promoted similar push-out bond strength values.
Resumo:
This study sought to evaluate the efficacy of passive ultrasonic irrigation (PUI) on removing the smear layer and debris from root dentin using scanning electron microscopy (SEM). Twenty-five bovine incisors were manually prepared and divided into three groups according to the final irrigation protocol: EDTA, final irrigation with 12 mL of 17% EDTA for 3 minutes followed by 5 mL of 2.5% NaOCl; EDTA=PUI, final flush with 4 mL of 17% EDTA and PUI for 30 seconds. These procedures were repeated three times to standardize the volume of the irrigant. Control group, after preparation, the specimens were irrigated only with 17 mL of 2.5% NaOCl. The roots were fractured and analyzed using SEM. The intragroup analysis revealed that the EDTA=PUI protocol removed a higher amount of debris at the cervical third (P 5 0.03). The intergroup analysis revealed that EDTA=PUI presented the lowest amount of debris at the cervical third (P 5 0.007). Smear layer scores were higher in the control group compared with the EDTA and EDTA=PUI groups, but only at the cervical third (P 50.02). None of the final irrigant protocols completely removed the smear layer and debris. EDTA=PUI only improved the removal of debris at the cervical third.
Resumo:
Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.
Resumo:
Intravital imaging techniques are the best approach to investigate in situ cellular behavior under physiological conditions. Many techniques have emerged during these last few years for this purpose. We recently described an intravital imaging technique that allows for the observation of placenta physiological responses at the labyrinth layer of this tissue. This technique will be very useful to study many placental opportunistic infections and in this article we reinforce its usefulness by analyzing placental physiological entrapment of beads and parasites. In particular, our results show that small beads (1.0 μm) or Plasmodium chabaudi-GFP-infected-Red Blood Cells (Pc-GFP-iRBCs) cannot get trapped inside small or large blood vessels of popliteal lymph nodes (PLNs). Inside the placenta, clusters of beads could only be found inside the maternal blood vessels. However, Pc-GFP-iRBCs were found inside and outside the maternal blood vessels. We observed that trophoblasts can ingest infected-Red Blood Cells (iRBCs) in vitro and immunofluorescence of placenta revealed Pc-GFP-iRBCs inside and outside the maternal blood vessels. Taken together, we conclude that fast deposition of particles inside blood vessels seems to be an intrinsic characteristic of placenta blood flow, but iRBCs could be internalized by trophoblast cells. Thus these results represent one of the many possible uses of our intravital imaging technique to address important questions inside the parasitological field.
Resumo:
Ultra-thin (thicknesses of 50-90 nm) nanocomposite films of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm in diameter) and polyelectrolytes (doped polyaniline-PANI, poly-3,4-ethylenedioxy thiophene: polystyrene sulfonic acid-PEDOT:PSS, and sulfonated lignin-SL) are assembled layer-by-layer onto interdigitated microelectrodes aiming at to create novel nanostructured sensoactive materials for liquid media chemical sensors. The nanocomposites display a distinctive globular morphology with nanoparticles densely-packed while surrounded by polyelectrolytes. Due to the presence of np-CoFe2O4 the nanocomposites display low electrical conductivity according to impedance data. On the other hand, this apparent shortcoming turns such nanocomposites much more sensitive to the presence of ions in solution than films made exclusively of conducting polyelectrolytes. For example, the electrical resistance of np-CoFe2O4/PEDOT:PSS and PANI/SL/np-CoFe2O4/SL architectures has a 10-fold decrease when they are immersed in 20 mmol. L-1 NaCl solution. Impedance spectra fitted with the response of an equivalent circuit model suggest that the interface created between nanoparticles and polyelectrolytes plays a major role on the nanocomposites electrical/dielectrical behavior. Since charge transport is sensitive to nanoparticle-polyelectrolyte interfaces as well as to the physicochemical conditions of the environment, the np-CoFe2O4-based nanocomposites can be used as sensing elements in chemical sensors operated under ac regime and room temperature.
Resumo:
Electrostatic and hydrophobic interactions govern most of the properties of supramolecular systems, which is the reason determining the degree of ionization of macromolecules has become crucial for many applications. In this paper, we show that highresolution ultraviolet spectroscopy (VUV) can be used to determine the degree of ionization and its effect on the electronic excitation energies of layer-by-layer (LbL) films of poly(allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-4 hydroxyphenylazo)- benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). A full assignment of the VUV peaks of these polyelectrolytes in solution and in cast or LbL films could be made, with their pH dependence allowing us to determine the p'K IND. a' using the Henderson-Hasselbach equation. The p'K IND. a' for PAZO increased from ca. 6 in solution to ca. 7.3 in LbL films owing to the charge transfer from PAH. Significantly, even using solutions at a fixed pH for PAH, the amount adsorbed on the LbL films still varied with the pH of the PAZO solutions due to these molecular-level interactions. Therefore, the procedure based on a comparison of VUV spectra from solutions and films obtained under distinct conditions is useful to determine the degree of dissociation of macromolecules, in addition to permitting interrogation of interface effects in multilayer films.