25 resultados para Active Site Probes
Resumo:
Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor vs. normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a "gating loop" as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. Phosphate also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion.
Resumo:
Polyamine biosynthesis enzymes are promising drug targets for the treatment of leishmaniasis, Chagas' disease and African sleeping sickness. Arginase, which is a metallohydrolase, is the first enzyme involved in polyamine biosynthesis and converts arginine into ornithine and urea. Ornithine is used in the polyamine pathway that is essential for cell proliferation and ROS detoxification by trypanothione. The flavonols quercetin and quercitrin have been described as antitrypanosomal and antileishmanial compounds, and their ability to inhibit arginase was tested in this work. We characterized the inhibition of recombinant arginase from Leishmania (Leishmania) amazonensis by quercetin, quercitrin and isoquercitrin. The IC50 values for quercetin, quercitrin and isoquercitrin were estimated to be 3.8, 10 and 4.3 mu M, respectively. Quercetin is a mixed inhibitor, whereas quercitrin and isoquercitrin are uncompetitive inhibitors of L. (L.) amazonensis arginase. Quercetin interacts with the substrate L-arginine and the cofactor Mn2+ at pH 9.6, whereas quercitrin and isoquercitrin do not interact with the enzyme's cofactor or substrate. Docking analysis of these flavonols suggests that the cathecol group of the three compounds interact with Asp129, which is involved in metal bridge formation for the cofactors Mn-A(2+) and Mn-B(2+) in the active site of arginase. These results help to elucidate the mechanism of action of leishmanicidal flavonols and offer new perspectives for drug design against Leishmania infection based on interactions between arginase and flavones. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Aldolase has emerged as a promising molecular target for the treatment of human African trypanosomiasis. Over the last years, due to the increasing number of patients infected with Trypanosoma brucei, there is an urgent need for new drugs to treat this neglected disease. In the present study, two-dimensional fragment-based quantitative-structure activity relationship (QSAR) models were generated for a series of inhibitors of aldolase. Through the application of leave-one-out and leave-many-out cross-validation procedures, significant correlation coefficients were obtained (r(2) = 0.98 and q(2) = 0.77) as an indication of the statistical internal and external consistency of the models. The best model was employed to predict pK(i) values for a series of test set compounds, and the predicted values were in good agreement with the experimental results, showing the power of the model for untested compounds. Moreover, structure-based molecular modeling studies were performed to investigate the binding mode of the inhibitors in the active site of the parasitic target enzyme. The structural and QSAR results provided useful molecular information for the design of new aldolase inhibitors within this structural class.
Resumo:
Supercritical carbon dioxide is a promising green-chemistry solvent for many enzyme-catalyzed chemical reactions, yet the striking stability of some enzymes in such unconventional environments is not well understood. Here, we investigate the stabilization of the Candida antarctica Lipase B (CALB) in supercritical carbon dioxide-water biphasic systems using molecular dynamics simulations. The preservation of the enzyme structure and optimal activity depend on the presence of small amounts of water in the supercritical dispersing medium. When the protein is at least partially hydrated, water molecules bind to specific sites on the enzyme surface and prevent carbon dioxide from penetrating its catalytic core. Strikingly, water and supercritical carbon dioxide cover the protein surface quite heterogeneously. In the first solvation layer, the hydrophilic residues at the surface of the protein are able to pin down patches of water, whereas carbon dioxide solvates preferentially hydrophobic surface residues. In the outer solvation shells, water molecules tend to cluster predominantly on top of the larger water patches of the first solvation layer instead of spreading evenly around the remainder of the protein surface. For CALB, this exposes the substrate-binding region of the enzyme to carbon dioxide, possibly facilitating diffusion of nonpolar substrates into the catalytic funnel. Therefore, by means of microheterogeneous solvation, enhanced accessibility of hydrophobic substrates to the active site can be achieved, while preserving the functional structure of the enzyme. Our results provide a molecular picture on the nature of the stability of proteins in nonaqueous media.
Resumo:
The crystallographically determined structure of biologically active 4,4-dichloro-1,3-diphenyl-4-telluraoct-2-en-1-one, 3, shows the coordination geometry for Te to be distorted psi-pentagonal bipyramidal based on a C2OCl3(lone pair) donor set. Notable is the presence of an intramolecular axial Te center dot center dot center dot O (carbonyl) interaction, a design element included to reduce hydrolysis. Raman and molecular modelling studies indicate the persistence of the Te center dot center dot center dot O(carbonyl) interaction in the solution (CHCl3) and gasphases, respectively. Docking studies of 3' (i.e. original 3 less one chloride) with Cathepsin B reveals a change in the configuration about the vinyl C = C bond. i.e. to E from Z (crystal structure). This isomerism allows the optimisation of interactions in the complex which features a covalent Te-SGCys29 bond. Crucially, the E configuration observed for 3' allows for the formation of a hypervalent Te center dot center dot center dot O interaction as well as an O center dot center dot center dot H-O hydrogen bond with the Gly27 and Glu122 residues, respectively. Additional stabilisation is afforded by a combination of interactions spanning the S1, S2, S1' and S2' sub-sites of Cathepsin B. The greater experimental inhibitory activity of 3 compared with analogues is rationalised by the additional interactions formed between 3' and the His110 and His111 residues in the occluding loop, which serve to hinder the entrance to the active site. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work presents the results from the development of bio-cathodes for the application on paper-based biofuel cells. Our main goal here is to demonstrate the possibility of using different designs of air-breathing bio-cathodes and ink-based bio-cathodes for this new type of paper based electrochemical cell. The electrochemical performance for the bio-electrocatalytic oxygen reduction reaction was studied by using open circuit voltage and amperometry measurements, as well as polarization curves to probe the four-electron reduction reaction of ambient oxygen catalyzed by bilirubin oxidase (BOx). The electrochemical measurements showed that all procedures allowed the direct electron transfer from the active site of the bilirubin oxidase to the electrode surface with a limiting current density of almost 500 mu A cm(-2) for an air-breathing BOx cathode and 150 mu A cm(-2) for an ink based BOx cathode. Under a load of 300 mV a stable current density was obtained for 12 h of continuous operation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and has been exploited as the target for therapy against proliferative and parasitic diseases. In this study, we report the crystal structures of DHODH from Leishmania major, the species of Leishmania associated with zoonotic cutaneous leishmaniasis, in its apo form and in complex with orotate and fumarate molecules. Both orotate and fumarate were found to bind to the same active site and exploit similar interactions, consistent with a ping-pong mechanism described for class 1A DHODHs. Analysis of LmDHODH structures reveals that rearrangements in the conformation of the catalytic loop have direct influence on the dimeric interface. This is the first structural evidence of a relationship between the dimeric form and the catalytic mechanism. According to our analysis, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to validate DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping sickness and Chagas' diseases. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
The Human Secreted Group IID Phospholipase A(2) (hsPLA2GIID) may be involved in the human acute immune response. Here we have demonstrated that the hsPLA2GIID presents bactericidal and Ca2+-independent liposome membrane-damaging activities and we have compared these effects with the catalytic activity of active-site mutants of the protein. All mutants showed reduced hydrolytic activity against DOPC:DOPG liposome membranes, however bactericidal effects against Escherichia coli and Micrococcus luteus were less affected, with the D49K mutant retaining 30% killing of the Gram-negative bacteria at a concentration of 10 mu g/mL despite the absence of catalytic activity. The H48Q mutant maintained Ca2+-independent membrane-damaging activity whereas the G30S and D49K mutants were approximately 50% of the wild-type protein, demonstrating that phospholipid bilayer permeabilization by the hsPLA2GIID is independent of catalytic activity. We suggest that this Ca2+-independent damaging activity may play a role in the bactericidal function of the protein. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Abstract Background Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (EC 2.4.2.8) is a central enzyme in the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida cannot synthesize purines de novo and use the salvage pathway to synthesize purine bases, making this an attractive target for antiparasitic drug design. Results The glycosomal HGPRT from Leishmania tarentolae in a catalytically active form purified and co-crystallized with a guanosine monophosphate (GMP) in the active site. The dimeric structure of HGPRT has been solved by molecular replacement and refined against data extending to 2.1 Å resolution. The structure reveals the contacts of the active site residues with GMP. Conclusion Comparative analysis of the active sites of Leishmania and human HGPRT revealed subtle differences in the position of the ligand and its interaction with the active site residues, which could be responsible for the different reactivities of the enzymes to allopurinol reported in the literature. The solution and analysis of the structure of Leishmania HGPRT may contribute to further investigations leading to a full understanding of this important enzyme family in protozoan parasites.
Resumo:
We investigated the seasonal patterns of Amazonian forest photosynthetic activity, and the effects thereon of variations in climate and land-use, by integrating data from a network of ground-based eddy flux towers in Brazil established as part of the ‘Large-Scale Biosphere Atmosphere Experiment in Amazonia’ project. We found that degree of water limitation, as indicated by the seasonality of the ratio of sensible to latent heat flux (Bowen ratio) predicts seasonal patterns of photosynthesis. In equatorial Amazonian forests (5◦ N–5◦ S), water limitation is absent, and photosynthetic fluxes (or gross ecosystem productivity, GEP) exhibit high or increasing levels of photosynthetic activity as the dry season progresses, likely a consequence of allocation to growth of new leaves. In contrast, forests along the southern flank of the Amazon, pastures converted from forest, and mixed forest-grass savanna, exhibit dry-season declines in GEP, consistent with increasing degrees of water limitation. Although previous work showed tropical ecosystem evapotranspiration (ET) is driven by incoming radiation, GEP observations reported here surprisingly show no or negative relationships with photosynthetically active radiation (PAR). Instead, GEP fluxes largely followed the phenology of canopy photosynthetic capacity (Pc), with only deviations from this primary pattern driven by variations in PAR. Estimates of leaf flush at three