48 resultados para ADSORBED CELLULASE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We aim in this study to characterize the effect of cations and polycations on the formation of hybrid bilayer membranes (HBMs), especially those that mimic the inner mitochondrial membrane (IMM), with a proper composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cardiolipin (CL) adsorbed on an alkanethiol monolayer. HBMs are versatile membrane mimetics that show promising results in sensor technology. Its formation depends on the fusion of vesicles on hydrophobic surfaces, a process that is not well understood at the molecular level. Our results showed to which extend and in which condition the presence of cations and polycations facilitate the formation of HBMs. The required time for lipid layer formation was reduced several times and the lipid layer reaches the expected thickness of 19.5 +/- 1.8 angstrom, in contrast to only 2 +/- 1.5 angstrom usually observed in the absence of cations. In the presence of specific concentrations of spermine and Ca2+ the amount of adsorbed phospholipids on the thiol layer increased nearly 70% compared to that observed when Na+ was used at concentrations 10 times higher. Divalent cations and polycations adsorb specifically on the lipid headgroups destabilizing the hydration forces, facilitating the process of vesicle fusion and formation of lipid monolayers. The concepts and conditions described in the manuscript will certainly help the development of the field of membrane biosensors. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This manuscript reports on the fabrication of plasmonic substrates using cathodic arc plasma ion implantation, in addition to their performance as SERS substrates. The technique allows for the incorporation of a wide layer of metallic nanoparticles into a polymer matrix, such as PMMA. The ability to pattern different structures using the PMMA matrix is one of the main advantages of the fabrication method. This opens up new possibilities for obtaining tailored substrates with enhanced performance for SERS and other surface-enhanced spectroscopies, as well as for exploring the basic physics of patterned metal nanostructures. The architecture of the SERS-active substrate was varied using three adsorption strategies for incorporating a laser dye (rhodamine): alongside the nanoparticles into the polymer matrix, during the polymer cure and within nanoholes lithographed on the polymer. As a proof-of-concept, we obtained the SERS spectra of rhodamine for the three types of substrates. The hypothesis of incorporation of rhodamine molecules into the polymer matrix during the cathodic arc plasma ion implantation was supported by FDTD (Finite-Difference Time-Domain) simulations. In the case of arrays of nanoholes, rhodamine molecules could be adsorbed directly on the gold surface, then yielding a well-resolved SERS spectrum for a small amount of analyte owing to the short-range interactions and the large longitudinal field component inside the nanoholes. The results shown here demonstrate that the approach based on ion implantation can be adapted to produce reproducible tailored substrates for SERS and other surface-enhanced spectroscopies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Films of cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) were deposited from ethyl acetate solutions onto bare silicon wafers (Si/SiO2) or amino-terminated surfaces (APS) by means of equilibrium adsorption. All surfaces were characterized by means of ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The presence of amino groups on the support surface favored the adsorption of CAB and CMCAB, inducing the orientation almost polar groups to the surface and the exposition of alkyl group to the air. Such molecular orientation caused increase of the dispersive component of surface energy (gamma(d)(s)) and decrease of the polar component of surface energy (gamma(p)(s)) of cellulose esters in comparison to those values determined for films deposited onto bare Si/SiO2 wafers. Adsorption behavior of jacalin or concanavalin A onto CAB and CMCAB films was also investigated. The adsorbed amounts of lectins were more pronounced on cellulose esters with high (gamma(p)(s)) and total surface energy (gamma(t)(s)) values. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochromic behavior of iron complexes derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) and a hexacyanoferrate species in polyelectrolytic multilayer adsorbed films is described for the first time. This complex macromolecule was deposited onto indium-tin oxide (ITO) substrates via self-assembly, and the morphology of the modified electrodes was studied using atomic force microscopy (AFM), which indicated that the hybrid film containing the polyelectrolyte multilayer and the iron complex was highly homogeneous and was approximately 50 nm thick. The modified electrodes exhibited excellent electrochromic behavior with both intense and persistent coloration as well as a chromatic contrast of approximately 70%. In addition, this system achieved high electrochromic efficiency (over 70 cm(2) C-1 at 630 nm) and a response time that could be measured in milliseconds. The electrode was cycled more than 10(3) times, indicating excellent stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic properties of Mn nanostructures on the Fe(001) surface have been studied using the noncollinear first-principles real space-linear muffin-tin orbital-atomic sphere approximation method within density-functional theory. We have considered a variety of nanostructures such as adsorbed wires, pyramids, and flat and intermixed clusters of sizes varying from two to nine atoms. Our calculations of interatomic exchange interactions reveal the long-range nature of exchange interactions between Mn-Mn and Mn-Fe atoms. We have found that the strong dependence of these interactions on the local environment, the magnetic frustration, and the effect of spin-orbit coupling lead to the possibility of realizing complex noncollinear magnetic structures such as helical spin spiral and half-skyrmion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interesting method to investigate the effect of fuel crossover in low temperature fuel cells consists of studying the open circuit interaction between the reducing fuel and an oxide-covered catalyst. Herein we report the experimental study of the open circuit interaction between borohydride and oxidized platinum surfaces in alkaline media. When compared to the case of hydrogen and other small organic molecules, two remarkable new features were observed. Firstly, the interaction with borohydride resulted in a very-fast reduction process with transient times about two to three orders of magnitude smaller. The second peculiarity was that the decrease of the open circuit potential was found to occur in two-stages and this, previously unseen, feature was correlated with the two-hump profile found in the backward sweep in the cyclic voltammogram The consequences of our findings are discussed in connection with fundamental and applied aspects. (C) 2011 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present results on the electro-oxidation of ethanol on unsupported (carbon free) platinum nanoparticles, considering the effects of the alcohol concentration. The case of the so-called dual pathway mechanism during the electro-oxidation of ethanol showed to be influenced by the surface coverage of adsorbed carbon monoxide (COad) at unsupported platinum. The influences of adsorbed intermediates were followed by in situ infrared spectroscopy (FTIR) and by electrochemical experiments. Unsupported platinum showed that the reaction leads to the formation of CO2 and acetic acid as main products at low concentrations of ethanol (0.01 to 0.1 mol L-1). At least in this case of 0.01 mol L-1 ethanol, most formation of CO2 occurred via COad (indirect pathway). At higher concentration of ethanol, however, most CO2 was formed via a reactive intermediate such as acetaldehyde (direct pathway). In addition, in this higher concentration of ethanol, the acetic acid was produced via formation of adsorbed acetaldehyde (via acetate) at higher overpotentials. In case of the acetic acid formation, a dual pathway was identified during the electro-oxidation of ethanol at low alcohol concentrations, whereas a parallel pathway occurred without the formation of adsorbed acetate intermediates at low overpotentials. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.101203jes] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a novel material for the electrochemical determination of bisphenol A using a nanocomposite based on multi-walled carbon nanotubes modified with antimony nanoparticles has been investigated. The morphology, structure, and electrochemical performance of the nanocomposite electrodes were characterised by field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, and cyclic voltammetry. A scan rate study and electrochemical impedance spectroscopy showed that the bisphenol A oxidation product is adsorbed on nanocomposite electrode surface. Differential pulse voltammetry in phosphate buffer solution at pH 6, allowed the development of a method to determine bisphenol A levels in the range of 0.5-5.0 mu mol L-1, with a detection limit of 5.24 nmol L-1 (1.19 mu g L-1). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The xylanase biosynthesis is induced by its substrate-xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and beta-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The promotion of sugarcane growth by the endophytic Pantoea agglomerans strain 33.1 was studied under gnotobiotic and greenhouse conditions. The green fluorescent protein (GFP)-tagged strain P. agglomerans 33.1: pNKGFP was monitored in vitro in sugarcane plants by microscopy, reisolation, and quantitative PCR (qPCR). Using qPCR and reisolation 4 and 15 days after inoculation, we observed that GFP-tagged strains reached similar density levels both in the rhizosphere and inside the roots and aerial plant tissues. Microscopic analysis was performed at 5, 10, and 18 days after inoculation. Under greenhouse conditions, P. agglomerans 33.1-inoculated sugarcane plants presented more dry mass 30 days after inoculation. Cross-colonization was confirmed by reisolation of the GFP-tagged strain. These data demonstrate that 33.1:pNKGFP is a superior colonizer of sugarcane due to its ability to colonize a number of different plant parts. The growth promotion observed in colonized plants may be related to the ability of P. agglomerans 33.1 to synthesize indoleacetic acid and solubilize phosphate. Additionally, this strain may trigger chitinase and cellulase production by plant roots, suggesting the induction of a plant defense system. However, levels of indigenous bacterial colonization did not vary between inoculated and noninoculated sugarcane plants under greenhouse conditions, suggesting that the presence of P. agglomerans 33.1 has no effect on these communities. In this study, different techniques were used to monitor 33.1:pNKGFP during sugarcane cross-colonization, and our results suggested that this plant growth promoter could be used with other crops. The interaction between sugarcane and P. agglomerans 33.1 has important benefits that promote the plant's growth and fitness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The layer-by-layer (LbL) technique combined with field-effect transistor (FET) based sensors has enabled the production of pH-sensitive platforms with potential application in biosensors. A variation of the FET architecture, so called separative extended gate FET (SEGFET) devices, are promise as an alternative to conventional ion sensitive FET (ISFET). SEGFET configuration exhibits the advantage of combining the field-effect concept with organic and inorganic materials directly adsorbed on the extended gate, allowing the test of new pH-sensitive materials in a simple and low cost way. In this communication, poly(propylene imine) dendrimer (PPI) and TiO2 nanoparticles (TiO2-np) were assembled onto gold-covered substrates via layer-by-layer technique to produce a low cost SEGFET pH sensor. The sensor presented good pH sensitivity, ca. 57 mV pH(-1), showing that our strategy has potential advantages to fabricate low cost pH-sensing membranes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immobilization of the glucose/mannose-binding lectin from Concanavalia ensiformis seeds (ConA) onto a monolayer made of a galactomannan extracted from Leucaena leucocephala seeds (GML), which was adsorbed onto - amino-terminated surfaces, was investigated by means of ellipsometry and atomic force microscopy. The mean thickness of GML monolayer, which polysaccharide consists of linear 1 -> 4-linked beta-D-mannopyranosil units partially substituted at C-6 by alpha-D-galactopyranosyl units, amounted to (1.5 +/- 0.2) nm. ConA molecules adsorbed onto GML surfaces forming (2.0 +/- 0.5) nm thick layers. However, in the presence of mannose the adsorption failed, indicating that ConA binding sites were blocked by mannose and were no longer available for mannose units present in the GML backbone. The GML film was also used as support for the adsorption of three serotypes of dengue virus particles (DENV-1, DENV-2 and DENV-3), where DENV-2 formed the thickest film (4 +/- 2) nm. The adsorbed layer of DENV-2 onto ConA-covered GML surfaces presented mean thickness values similar to that determined for DENV-2 onto bare GML surfaces. The addition of free mannose units prevented DENV-2 adsorption onto ConA-covered GML films by similar to 50%, suggesting competition between virus and mannose for ConA binding sites. This finding suggests that if ConA is also adsorbed to GML surface and its binding site is blocked by free mannose, virus particles are able to recognized GML mannose unities substituted by galactose. interactions between polysaccharides thin films, proteins, and viruses are of great relevance since they can provide basis for the development of biotechnological devices. These results indicate that GML is a potential polysaccharide for biomaterials development, as those could involve interactions between ConA in immune system and viruses. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.