20 resultados para 6 DEGREES-OF-FREEDOM (DOF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reproducing Fourier's law of heat conduction from a microscopic stochastic model is a long standing challenge in statistical physics. As was shown by Rieder, Lebowitz and Lieb many years ago, a chain of harmonically coupled oscillators connected to two heat baths at different temperatures does not reproduce the diffusive behaviour of Fourier's law, but instead a ballistic one with an infinite thermal conductivity. Since then, there has been a substantial effort from the scientific community in identifying the key mechanism necessary to reproduce such diffusivity, which usually revolved around anharmonicity and the effect of impurities. Recently, it was shown by Dhar, Venkateshan and Lebowitz that Fourier's law can be recovered by introducing an energy conserving noise, whose role is to simulate the elastic collisions between the atoms and other microscopic degrees of freedom, which one would expect to be present in a real solid. For a one-dimensional chain this is accomplished numerically by randomly flipping - under the framework of a Poisson process with a variable “rate of collisions" - the sign of the velocity of an oscillator. In this poster we present Langevin simulations of a one-dimensional chain of oscillators coupled to two heat baths at different temperatures. We consider both harmonic and anharmonic (quartic) interactions, which are studied with and without the energy conserving noise. With these results we are able to map in detail how the heat conductivity k is influenced by both anharmonicity and the energy conserving noise. We also present a detailed analysis of the behaviour of k as a function of the size of the system and the rate of collisions, which includes a finite-size scaling method that enables us to extract the relevant critical exponents. Finally, we show that for harmonic chains, k is independent of temperature, both with and without the noise. Conversely, for anharmonic chains we find that k increases roughly linearly with the temperature of a given reservoir, while keeping the temperature difference fixed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene has received great attention due to its exceptional properties, which include corners with zero effective mass, extremely large mobilities, this could render it the new template for the next generation of electronic devices. Furthermore it has weak spin orbit interaction because of the low atomic number of carbon atom in turn results in long spin coherence lengths. Therefore, graphene is also a promising material for future applications in spintronic devices - the use of electronic spin degrees of freedom instead of the electron charge. Graphene can be engineered to form a number of different structures. In particular, by appropriately cutting it one can obtain 1-D system -with only a few nanometers in width - known as graphene nanoribbon, which strongly owe their properties to the width of the ribbons and to the atomic structure along the edges. Those GNR-based systems have been shown to have great potential applications specially as connectors for integrated circuits. Impurities and defects might play an important role to the coherence of these systems. In particular, the presence of transition metal atoms can lead to significant spin-flip processes of conduction electrons. Understanding this effect is of utmost importance for spintronics applied design. In this work, we focus on electronic transport properties of armchair graphene nanoribbons with adsorbed transition metal atoms as impurities and taking into account the spin-orbit effect. Our calculations were performed using a combination of density functional theory and non-equilibrium Greens functions. Also, employing a recursive method we consider a large number of impurities randomly distributed along the nanoribbon in order to infer, for different concentrations of defects, the spin-coherence length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper is presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin systems in the presence of disorder are described by two sets of degrees of freedom, associated with orientational (spin) and disorder variables, which may be characterized by two distinct relaxation times. Disordered spin models have been mostly investigated in the quenched regime, which is the usual situation in solid state physics, and in which the relaxation time of the disorder variables is much larger than the typical measurement times. In this quenched regime, disorder variables are fixed, and only the orientational variables are duly thermalized. Recent studies in the context of lattice statistical models for the phase diagrams of nematic liquid-crystalline systems have stimulated the interest of going beyond the quenched regime. The phase diagrams predicted by these calculations for a simple Maier-Saupe model turn out to be qualitative different from the quenched case if the two sets of degrees of freedom are allowed to reach thermal equilibrium during the experimental time, which is known as the fully annealed regime. In this work, we develop a transfer matrix formalism to investigate annealed disordered Ising models on two hierarchical structures, the diamond hierarchical lattice (DHL) and the Apollonian network (AN). The calculations follow the same steps used for the analysis of simple uniform systems, which amounts to deriving proper recurrence maps for the thermodynamic and magnetic variables in terms of the generations of the construction of the hierarchical structures. In this context, we may consider different kinds of disorder, and different types of ferromagnetic and anti-ferromagnetic interactions. In the present work, we analyze the effects of dilution, which are produced by the removal of some magnetic ions. The system is treated in a “grand canonical" ensemble. The introduction of two extra fields, related to the concentration of two different types of particles, leads to higher-rank transfer matrices as compared with the formalism for the usual uniform models. Preliminary calculations on a DHL indicate that there is a phase transition for a wide range of dilution concentrations. Ising spin systems on the AN are known to be ferromagnetically ordered at all temperatures; in the presence of dilution, however, there are indications of a disordered (paramagnetic) phase at low concentrations of magnetic ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.