47 resultados para 2glycosidic-isoprenoid-glycerol dibiphytanyl nonitol tetraether


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L-1 day(-1)) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L-1 day(-1) were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L-1 day(-1), highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L-1 day(-1), organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effectiveness of the association of dexamethasone with antibiotic therapy in pediatric patients with bacterial meningitis Objective: To evaluate the efficacy of the association of corticosteroids and the standard treatment of bacterial meningitis in pediatric patients. Methods: A systematic review of the literature was conducted through the MEDLINE database. Only randomized controlled trials comparing dexamethasone with placebo in the treatment of pediatric patients with bacterial meningitis were included. Results: Eight articles met the inclusion criteria and were selected for analysis. There were no difference in mortality (p = 0.86), and incidence of neurological (p = 0.41) and auditory (p = 0.48) sequelae between the groups. Conclusion: There are no benefits in associating corticosteroids with the standard treatment of bacterial meningitis in pediatric patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functionalization with surfactants and with active molecules of deoxyribonucleic acid (DNA), thin film processing as well as their nonlinear optical and electrical properties are reviewed and discussed. On the basis of a quantum three level model, we show that the anomalous concentration variation of cubic susceptibility chi((3))(-3 omega; omega, omega, omega) in thin films of DNA-CTMA complexes doped with Disperse Red 1 chromophore can be explained by the concentration variation of two-photon resonance contribution. We show also that the DNA complexes, plasticized with glycerol and adequately doped can be processed into self standing conducting membranes with a high electrical conductivity. The measured ionic conductivity at room temperature, depending on dopant used and its concentration, is in the range of 3.5 x 10(-4)-10(-5) S/cm and increases linearly as a function of temperature, reaching 10(-3) S/cm at 358 K for the most conducting sample, obeying predominantly the Arrhenius law. Practical applications of DNA complexes are also described and discussed. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dispersion of photoluminescent rare earth metal complexes in polymer matrices is of great interest due to the possibility of avoiding the saturation of the photoluminescent signal. The possibility of using a natural ionic conducting polymer matrix was investigated in this study. Samples of agar-based electrolytes containing europium picrate were prepared and characterized by physical and chemical analyses. The FTIR spectra indicated strong interaction of agar O-H and 3.6-anhydro-galactose C-O groups with glycerol and europium picrate. The DSC analyses revealed no glass transition temperature of the samples in the -60 to 250 degrees C range. From the thermogravimetry (TG), a thermal stability of the samples of up to 180 degrees C was stated. The membranes were subjected to ionic conductivity measurement, which provided the values of 2.6 x 10(-6) S/cm for the samples with acetic acid and 1.6 x 10(-5) S/cm for the samples without acetic acid. Moreover, the temperature-dependent ionic conductivity measurements revealed both Arrhenius and VTF models of the conductivity depending on the sample. Surface visualization through scanning electron microscopy (SEM) demonstrated good uniformity. The samples were also applied in small electrochromic devices and showed good electrochemical stability. The present work confirmed that these materials may perform as satisfactory multifunctional component layers in the field of electrochemical devices. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jun JC, Shin MK, Yao Q, Bevans-Fonti S, Poole J, Drager LF, Polotsky VY. Acute hypoxia induces hypertriglyceridemia by decreasing plasma triglyceride clearance in mice. Am J Physiol Endocrinol Metab 303: E377-E388, 2012. First published May 22, 2012; doi:10.1152/ajpendo.00641.2011.-Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH) during sleep and is associated with elevated triglycerides (TG). We previously demonstrated that mice exposed to chronic IH develop elevated TG. We now hypothesize that a single exposure to acute hypoxia also increases TG due to the stimulation of free fatty acid (FFA) mobilization from white adipose tissue (WAT), resulting in increased hepatic TG synthesis and secretion. Male C57BL6/J mice were exposed to FiO(2) = 0.21, 0.17, 0.14, 0.10, or 0.07 for 6 h followed by assessment of plasma and liver TG, glucose, FFA, ketones, glycerol, and catecholamines. Hypoxia dose-dependently increased plasma TG, with levels peaking at FiO(2) = 0.07. Hepatic TG levels also increased with hypoxia, peaking at FiO(2) = 0.10. Plasma catecholamines also increased inversely with FiO(2). Plasma ketones, glycerol, and FFA levels were more variable, with different degrees of hypoxia inducing WAT lipolysis and ketosis. FiO(2) = 0.10 exposure stimulated WAT lipolysis but decreased the rate of hepatic TG secretion. This degree of hypoxia rapidly and reversibly delayed TG clearance while decreasing [H-3]triolein-labeled Intralipid uptake in brown adipose tissue and WAT. Hypoxia decreased adipose tissue lipoprotein lipase (LPL) activity in brown adipose tissue and WAT. In addition, hypoxia decreased the transcription of LPL, peroxisome proliferator-activated receptor-gamma, and fatty acid transporter CD36. We conclude that acute hypoxia increases plasma TG due to decreased tissue uptake, not increased hepatic TG secretion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we report a simple and environmentally friendly synthesis of silver nanoparticles (AgNps) and their activities towards the oxygen reduction reaction (ORR). Ultraviolet spectroscopy (UV-vis) and transmission electron microscopy confirmed the formation of poly(vinyl pyrrolidone)-protected colloidal AgNps through direct reduction of Ag+ by glycerol in alkaline medium at room temperature. For the ORR tests, the AgNps were directly produced onto carbon to yield the Ag/C catalyst. Levich plots revealed the process to occur via 2.7 electrons, suggesting that the carbon support contributes to the ORR. We discuss here possibilities of improving the catalytic properties of the Ag/C for ORR by optimizing the parameters of the synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well established that the development of insulin resistance shows a temporal sequence in different organs and tissues. Moreover, considering that the main aspect of insulin resistance in liver is a process of glucose overproduction from gluconeogenesis, we investigated if this metabolic change also shows temporal sequence. For this purpose, a well-established experimental model of insulin resistance induced by high-fat diet (HFD) was used. The mice received HFD (HFD group) or standard diet (COG group) for 1, 7, 14 or 56?days. The HFD group showed increased (P?<?0.05 versus COG) epididymal, retroperitoneal and inguinal fat weight from days 1 to 56. In agreement with these results, the HFD group also showed higher body weight (P?<?0.05 versus COG) from days 7 to 56. Moreover, the changes induced by HFD on liver gluconeogenesis were progressive because the increment (P?<?0.05 versus COG) in glucose production from l-lactate, glycerol, l-alanine and l-glutamine occurred 7, 14, 56 and 56 days after the introduction of the HFD schedule, respectively. Furthermore, glycaemia and cholesterolemia increased (P?<?0.05 versus COG) 14?days after starting the HFD schedule. Taken together, the results suggest that the intensification of liver gluconeogenesis induced by an HFD is not a synchronous all-or-nothing process but is specific for each gluconeogenic substrate and is integrated in a temporal manner with the progressive augmentation of fasting glycaemia. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-alpha, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-C-14]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-C-14]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gelatin-based films containing both Yucca schidigera extract and low concentrations of glycerol (0.25-8.75 g per 100 g protein) were produced by extrusion (EF) and characterized in relation to their mechanical properties and moisture content. The formulations that resulted in either larger or smaller elongation values were used to produce films via both blown extrusion (EBF) and casting (CF) and were characterized with respect to their mechanical properties, water vapor permeability, moisture content, solubility, morphology and infrared spectroscopy. The elongation of the EF films was significantly higher than that of the CF and EBF films. The transversal section possessed a compact, homogeneous structure for all of the films studied. The solubility of the films (36-40%) did not differ significantly between the different processes evaluated. The EBF films demonstrated lower water vapor permeability (0.12 g mm m-(2) h(-1) kPa(-1)) than the CF and EF films. The infrared spectra did not indicate any strong interactions between the added compounds. Thermoplastic processing of the gelatin films can significantly increase their elongation; however, a more detailed assessment and optimization of the extrusion conditions is necessary, along with the addition of partially hydrophobic compounds, such as surfactants. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myofibril proteins have excellent filmogenic properties. The objective of this article was to study the effect of the thermal treatment, of the pH and of the plasticizer concentration (Cp) of the filmogenic solution (FS), using over some physical properties of edible films, using a surface and response methodology (SRM). Films were made of lyophilized myofibril proteins (LMP) extracted from bovine muscle, employing the technique of solubility obtained from diluted saline solutions. The films were elaborated from FS containing 1 g of LMP/100g of FS and from Cp of 50 g to 79 g of glycerin/100 g of LMP. The LMP was dispersed in water under moderate agitation, and the pH was kept at 2.5-3.5 with the use of acetic acid. The FS were submitted to thermal treatment at different temperatures for 45 minutes. Films were dried in ventilated oven at 37 degrees C/18hr, conditioned at 75% of relative humidity at 25 degrees C/48 hr before analysis of: mechanical properties by puncture test; apparent opacity by spectrophotometer; solubility by immersion in water; and water vapor permeability by the gravimetric method. In general, films showed good appearance, translucent, easily handled and touchable, except for the films formed with pH 2.5 and at a low temperature (35 degrees C), with a medium thickness of 0.400 +/- 0.005 mm. The pH of the FS significantly affected all the physical properties under study. The temperature of the thermal treatment of the FS greatly affected the force at the rupture, solubility and water vapor permeability. This treatment can promote intermolecular interactions through the formation of disulphide bonds; however a very intense treatment can reverse this effect by irreversible structural alterations in the proteins. The glycerol concentration affected considerably all the properties under study, with the exception of the apparent opacity. Plasticizer increases the mobility of macromolecules with consequences in all physical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethylene-vinyl acetate copolymer (EVA) with 19% of vinyl acetate and its derivatives modified by hydrolysis of 50 and 100% of the initial vinyl acetate groups were used to produce blends with thermoplastic starch (TPS) plasticized with 30 wt% glycerol. The blends were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy. X-ray diffraction, water absorption, stress-strain mechanical tests, dynamic mechanical analysis and thermogravimetric analysis. In contrast to the blends with unmodified EVA. those made with hydrolyzed EVA were compatible, as demonstrated by the brittle fracture surface analysis and the results of thermal and mechanical tests. The mechanical characteristics and water absorption of the TPS were improved even with a small addition (2.5 wt%) of hydrolyzed EVA. The glass transition temperature rose with the degree of hydrolysis of EVA by 40 and 50 degrees, for the EVA with 50 and 100% hydrolysis, respectively. The addition of hydrolyzed EVA proved to be an interesting approach to improving TPS properties, even when very small quantities were used, such as 2.5 wt%. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy characterized by progressive and irreversible degeneration of the muscles. The mdx mouse is the classical animal model for DMD, showing similar molecular and protein defects. The mdx mouse, however, does not show significant muscle weakness, and the diaphragm muscle is significantly more degenerated than skeletal muscles. In this work, magnetic resonance spectroscopy (MRS) was used to study the metabolic profile of quadriceps and diaphragm muscles from mdx and control mice. Using principal components analysis (PCA), the animals were separated into groups according to age and lineages. The classification was compared to histopathological analysis. Among the 24 metabolites identified from the nuclear MR spectra, only 19 were used by the PCA program for classification purposes. These can be important key biomarkers associated with the progression of degeneration in mdx muscles and with natural aging in control mice. Glutamate, glutamine, succinate, isoleucine, acetate, alanine and glycerol were increased in mdx samples as compared to control mice, in contrast to carnosine, taurine, glycine, methionine and creatine that were decreased. These results suggest that MRS associated with pattern recognition analysis can be a reliable tool to assess the degree of pathological and metabolic alterations in the dystrophic tissue, thereby affording the possibility of evaluation of beneficial effects of putative therapies. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES: Serum amyloid A (SAA) is an acute-phase protein that has been recently correlated with obesity and insulin resistance. Therefore, we first examined whether human recombinant SAA (rSAA) could affect the proliferation, differentiation and metabolism of 3T3-L1 preadipocytes. DESIGN: Preadipocytes were treated with rSAA and analyzed for changes in viability and [H-3-methyl]-thymidine incorporation as well as cell cycle perturbations using flow cytometry analysis. The mRNA expression profiles of adipogenic factors during the differentiation protocol were also analyzed using real-time PCR. After differentiation, 2-deoxy-[1,2-H-3]-glucose uptake and glycerol release were evaluated. RESULTS: rSAA treatment caused a 2.6-fold increase in cell proliferation, which was consistent with the results from flow cytometry showing that rSAA treatment augmented the percentage of cells in the S phase (60.9 +/- 0.54%) compared with the control cells (39.8 +/- 2.2%, ***P<0.001). The rSAA-induced cell proliferation was mediated by the ERK1/2 signaling pathway, which was assessed by pretreatment with the inhibitor PD98059. However, the exposure of 3T3-L1 cells to rSAA during the differentiation process resulted in attenuated adipogenesis and decreased expression of adipogenesis-related factors. During the first 72 h of differentiation, rSAA inhibited the differentiation process by altering the mRNA expression kinetics of adipogenic transcription factors and proteins, such as PPAR gamma 2 (peroxisome proliferator-activated receptor gamma 2), C/EBP beta (CCAAT/enhancer-binding protein beta) and GLUT4. rSAA prevented the intracellular accumulation of lipids and, in fully differentiated cells, increased lipolysis and prevented 2-deoxy-[1,2-H-3]-glucose uptake, which favors insulin resistance. Additionally, rSAA stimulated the secretion of proinflammatory cytokines interleukin 6 and tumor necrosis factor alpha, and upregulated SAA3 mRNA expression during adipogenesis. CONCLUSIONS: We showed that rSAA enhanced proliferation and inhibited differentiation in 3T3-L1 preadipocytes and altered insulin sensitivity in differentiated cells. These results highlight the complex role of SAA in the adipogenic process and support a direct link between obesity and its co-morbidities such as type II diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of glycerol concentration (C-g), process temperature (T-p), drying temperature (T-s), and relative humidity (RH) on the properties of achira flour films was initially assessed. The optimized process conditions were C-g of 17g glycerol/100g flour, T-p of 90 degrees C, T-s of 44.8 degrees C, and RH of 36.4%. The films produced under these conditions displayed high mechanical strength (7.0 MPa), low solubility (38.3%). and satisfactory elongation values (14.6%). This study showed that achira flour is a promising source for the development of biodegradable films with good mechanical properties, low water vapor permeability, and solubility compared to films based on other tubers. (c) 2011 Elsevier Ltd. All rights reserved.