20 resultados para 1549


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A myriad of titanium (Ti) surface modifications has been proposed to hasten the osseointegration. In this context, the aim of this study was to perform histomorphometric, cellular, and molecular analyses of the bone tissue grown in close contact with Ti implants treated by anodic spark deposition (ASD-AK). Acid-etched (AE) Ti implants either untreated or submitted to ASD-AK were placed into dog mandibles and retrieved at 3 and 8 weeks. It was noticed that both implants, AE and ASD-AK, were osseointegrated at 3 and 8 weeks. Histomorphometric analysis showed differences between treatments only for bone-to-implant contact, being higher on AE implants. Although not backed by histomorphometric results, gene expression of key bone markers was higher for bone grown in close contact with ASD-AK and for cells harvested from these fragments and cultured until subconfluence. Cell proliferation at days 7 and 10 and alkaline phosphatase activity at day 10 was higher on AE surfaces. No statistical significant difference was noticed for extracellular matrix mineralization at 17 days. Our results have shown that the Ti fixtures treated by ASD-AK allowed in vivo osseointegration and induced higher expression of key markers of osteoblast phenotype, suggesting that this surface treatment could be considered to produce implants for clinical applications. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:30923098, 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the microhardness of radicular dentin after treatment with 980-nm diode laser and different irrigant solutions. Background data: There are few reports of the consequences of diode laser irradiation emitted at 980 nm on the mechanical properties of dentin. Methods: Seventy-two single canal, human canines with complete root formation were randomly distributed among three groups (n = 24), according to the irrigant solution used in the biomechanical preparation: distilled water; 1% NaOCl; and, 1% NaOCl + 17% EDTA. These groups subsequently were divided into three subgroups (n = 8), according to the diode laser parameter: no irradiation (control); 1.5W/100 Hz; and 3.0 W/100 Hz. Laser was applied with helicoidal movements for 20 sec. Roots were sectioned in slices and the fragment corresponding to the middle third was submitted to the microhardness test (KHN) at depths of 30, 90, 150, and 300 mu m. Results: ANOVA and Tukey tests showed that the microhardness of the groups irradiated with 1.5 W/100 Hz (49.7 +/- 11.2) and 3.0W/100 Hz (50.6 +/- 11.9) were statistically similar to each other (p > 0.05) and different (p < 0.05) from the non-irradiated group (45.0 +/- 9.7). Higher microhardness values were obtained at 150 mu m (49.2 +/- 11.0) and 300 mu m (52.3 +/- 11.3) which were similar among themselves and different (p < 0.05) only at the depth of 30 mu m (44.4 +/- 10.5). No differences were found among the irrigant solutions (p > 0.05). Conclusions: The microhardness of the radicular dentin increased after irradiation with 980-nm diode laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background data: The presence of Streptococcus mutans and Lactobacillus acidophilus in dental structure is an indicator of a cariogenic biofilm. Photodynamic therapy is a technique that involves the activation of photosensitizers by light in the presence of oxygen, resulting in the production of reactive radicals capable of inducing cell death. Reduction of bacteria levels can provide additional means of preventing dental caries. Objective: The present study evaluated the susceptibility of planktonic cultures of S. mutans (ATCC 25175) and L. acidophilus (ATCC-IAL-523) from the Adolfo Lutz Institute (IAL) to photodynamic therapy after sensitization with curcumin and exposure to blue light at 450 nm. Methods: Bacterial suspensions of S. mutans and L. acidophilus isolated (as single species) and combined (multspecies) were prepared and then evaluated. Four different groups were analyzed: L-D- (control group), L-D+ (drug group), L+D- (light group), and L+D+ (photodynamic therapy group). Two different concentrations of curcumin were tested (0.75 and 1.5 g/L) associated with a 5.7 J/cm(2) light emission diode. Results: Significant decreases (p < 0.05) in the viability of S. mutans were only observed when the bacterial suspensions were exposed to both curcumin and light. Then, reductions in viability of up to 99.99% were observed when using 1.5 g/L of the photosensitizer. The susceptibility of L. acidophilus was considerably lower (21% and 37.6%) for both curcumin concentrations. Conclusions: Photodynamic therapy was found to be effective in reducing S. mutans and L. acidophilus on planktonic cultures. No significant reduction was found for L-D+, proving the absence of dark toxicity of the drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Implant topography is an important factor that influences many cell types. To understand the role of topography in the inflammatory events, we evaluated the response of human gingival fibroblasts (HGFs) by the release pattern of cytokines. HGFs were cultured on Ti discs for 24 and 48 h. Four different surface treatments were used: machining method (turned), blasting followed by an acid-etching method (BAE), oxidative nanopatterning (ON) method, and an association of blasting followed by an acid-etching plus oxidative nanopatterning (BAE+ON) method. Extracellular levels of IL-6, IL-8, transforming growth factor beta (TGF-beta), IL-4, and IL-10 were measured by enzyme-linked immunosorbant assay. Increased levels of IL-6 and IL-8 were observed in all surfaces after 24 h which decreased after 48 h. BAE, ON, and BAE+ON surfaces showed a reduction in IL-6 levels compared with the turned after 48 h (p < 0.05). On one hand, IL-8 production was lower in BAE+ON in comparison to the turned surface (p < 0.05). On the other hand, IL-4 showed increased levels with 48 h, which were significantly different between turned, BAE, and ON surfaces, but not with BAE+ON. Additionally, TGF-beta and IL-10 production were not detected. This study indicates that nanotopography might be important in the modulation of the inflammatory response in cultured HGFs. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:2629-2636, 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The aim of this study was to screen CO2 laser (10.6 mu m) parameters to increase enamel resistance to a continuous-flow erosive challenge. Background data: A new clinical CO2 laser providing pulses of hundreds of microseconds, a range known to increase tooth acid-resistance, has been introduced in the market. Methods: Different laser parameters were tested in 12 groups (n = 20) with varying fluences from 0.1 to 0.9 J/cm(2), pulse durations from 80 to 400 mu s and repetition rates from 180 to 700 Hz. Non-lased samples (n = 30) served as controls. All samples were eroded by exposure to hydrochloric acid (pH 2.6) under continuous acid flow (60 mu L/min). Calcium and phosphate release into acid was monitored colorimetrically at 30 sec intervals up to 5 min and at 1 min intervals up to a total erosion time of 15 min. Scanning electron microscopic (SEM) analysis was performed in lased samples (n = 3). Data were statistically analysed by one-way ANOVA (p < 0.05) and Dunnett's post-hoc tests. Results: Calcium and phosphate release were significantly reduced by a maximum of 20% over time in samples irradiated with 0.4 J/cm(2) (200 mu s) at 450 Hz. Short-time reduction of calcium loss (<= 1.5 min) could be also achieved by irradiation with 0.7 J/cm(2) (300 mu s) at 200 and 300 Hz. Both parameters revealed surface modification. Conclusions: A set of CO2 laser parameters was found that could significantly reduce enamel mineral loss (20%) under in vitro erosive conditions. However, as all parameters also caused surface cracking, they are not recommended for clinical use.