29 resultados para stochastic optimization, physics simulation, packing, geometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated optical and transport properties of the molecular structure 2,3,4,5-tetraphenyl-1-phenylethynyl-cyclopenta-2,4-dienol experimentally and theoretically. The optical spectrum was calculated using Hartree-Fock-intermediate neglect of differential overlap-configuration interaction model. The experimental photoluminescence spectrum showed a peak around 470nm which was very well described by the modeling. Electronic transport measurements showed a diode-like effect with a strong current rectification. A phenomenological microscopic model based on non-equilibrium Green's function technique was proposed and a very good description electronic transport was obtained. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767457]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synchronous telecommunication networks, distributed control systems and integrated circuits have its accuracy of operation dependent on the existence of a reliable time basis signal extracted from the line data stream and acquirable to each node. In this sense, the existence of a sub-network (inside the main network) dedicated to the distribution of the clock signals is crucially important. There are different solutions for the architecture of the time distribution sub-network and choosing one of them depends on cost, precision, reliability and operational security. In this work we expose: (i) the possible time distribution networks and their usual topologies and arrangements. (ii) How parameters of the network nodes can affect the reachability and stability of the synchronous state of a network. (iii) Optimizations methods for synchronous networks which can provide low cost architectures with operational precision, reliability and security. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Piezoresistive sensors are commonly made of a piezoresistive membrane attached to a flexible substrate, a plate. They have been widely studied and used in several applications. It has been found that the size, position and geometry of the piezoresistive membrane may affect the performance of the sensors. Based on this remark, in this work, a topology optimization methodology for the design of piezoresistive plate-based sensors, for which both the piezoresistive membrane and the flexible substrate disposition can be optimized, is evaluated. Perfect coupling conditions between the substrate and the membrane based on the `layerwise' theory for laminated plates, and a material model for the piezoresistive membrane based on the solid isotropic material with penalization model, are employed. The design goal is to obtain the configuration of material that maximizes the sensor sensitivity to external loading, as well as the stiffness of the sensor to particular loads, which depend on the case (application) studied. The proposed approach is evaluated by studying two distinct examples: the optimization of an atomic force microscope probe and a pressure sensor. The results suggest that the performance of the sensors can be improved by using the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cutting and packing problems arise in a variety of industries, including garment, wood and shipbuilding. Irregular shape packing is a special case which admits irregular items and is much more complex due to the geometry of items. In order to ensure that items do not overlap and no item from the layout protrudes from the container, the collision free region concept was adopted. It represents all possible translations for a new item to be inserted into a container with already placed items. To construct a feasible layout, collision free region for each item is determined through a sequence of Boolean operations over polygons. In order to improve the speed of the algorithm, a parallel version of the layout construction was proposed and it was applied to a simulated annealing algorithm used to solve bin packing problems. Tests were performed in order to determine the speed improvement of the parallel version over the serial algorithm

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time correlation functions of current fluctuations were calculated by molecular dynamics (MD) simulations in order to investigate sound waves of high wavevectors in the glass-forming liquid Ca(NO3)(2)center dot 4H(2)O. Dispersion curves, omega(k), were obtained for longitudinal (LA) and transverse acoustic (TA) modes, and also for longitudinal optic (LO) modes. Spectra of LA modes calculated by MD simulations were modeled by a viscoelastic model within the memory function framework. The viscoelastic model is used to rationalize the change of slope taking place at k similar to 0.3 angstrom(-1) in the omega(k) curve of acoustic modes. For still larger wavevectors, mixing of acoustic and optic modes is observed. Partial time correlation functions of longitudinal mass currents were calculated separately for the ions and the water molecules. The wavevector dependence of excitation energies of the corresponding partial LA modes indicates the coexistence of a relatively stiff subsystem made of cations and anions, and a softer subsystem made of water molecules. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751548]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The irregular shape packing problem is approached. The container has a fixed width and an open dimension to be minimized. The proposed algorithm constructively creates the solution using an ordered list of items and a placement heuristic. Simulated annealing is the adopted metaheuristic to solve the optimization problem. A two-level algorithm is used to minimize the open dimension of the container. To ensure feasible layouts, the concept of collision free region is used. A collision free region represents all possible translations for an item to be placed and may be degenerated. For a moving item, the proposed placement heuristic detects the presence of exact fits (when the item is fully constrained by its surroundings) and exact slides (when the item position is constrained in all but one direction). The relevance of these positions is analyzed and a new placement heuristic is proposed. Computational comparisons on benchmark problems show that the proposed algorithm generated highly competitive solutions. Moreover, our algorithm updated some best known results. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and C-13 NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and C-13 NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photons scattered by the Compton effect can be used to characterize the physical properties of a given sample due to the influence that the electron density exerts on the number of scattered photons. However, scattering measurements involve experimental and physical factors that must be carefully analyzed to predict uncertainty in the detection of Compton photons. This paper presents a method for the optimization of the geometrical parameters of an experimental arrangement for Compton scattering analysis, based on its relations with the energy and incident flux of the X-ray photons. In addition, the tool enables the statistical analysis of the information displayed and includes the coefficient of variation (CV) measurement for a comparative evaluation of the physical parameters of the model established for the simulation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An explicit, area-preserving and integrable magnetic field line map for a single-null divertor tokamak is obtained using a trajectory integration method to represent equilibrium magnetic surfaces. The magnetic surfaces obtained from the map are capable of fitting different geometries with freely specified position of the X-point, by varying free model parameters. The safety factor profile of the map is independent of the geometric parameters and can also be chosen arbitrarily. The divertor integrable map is composed of a nonintegrable map that simulates the effect of external symmetry-breaking resonances, so as to generate a chaotic region near the separatrix passing through the X-point. The composed field line map is used to analyze escape patterns (the connection length distribution and magnetic footprints on the divertor plate) for two equilibrium configurations with different magnetic shear profiles at the plasma edge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the analytical application of surface-enhanced Raman spectroscopy (SERS) in the trace analysis of organophosphorous pesticides (trichlorfon and glyphosate) and model organophosphorous compounds (dimethyl methylphosphonate and o-ethyl methylphosphonothioate) bearing different functional groups. SERS measurements were carried out using Ag nanocubes with an edge square dimension of ca. 100 nm as substrates. Density functional theory (DFT) with the B3LYP functional was used for the optimization of ground state geometries and simulation of Raman spectra of the organophosphorous compounds and their silver complexes. Adsorption geometries and marker bands were identified for each of the investigated compound. Results indicate the usefulness of SERS methodology for the sensitive analyses of organophosphorous compounds through the use of vibrational spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a Monte Carlo code was used to investigate the performance of different x-ray spectra in digital mammography, through a figure of merit (FOM), defined as FOM = CNR2/(D) over bar (g), with CNR being the contrast-to-noise ratio in image and (D) over bar (g) being the average glandular dose. The FOM was studied for breasts with different thicknesses t (2 cm <= t <= 8 cm) and glandular contents (25%, 50% and 75% glandularity). The anode/filter combinations evaluated were those traditionally employed in mammography (Mo/Mo, Mo/Rh, Rh/Rh), and a W anode combined with Al or K-edge filters (Zr, Mo, Rh, Pd, Ag, Cd, Sn), for tube potentials between 22 and 34 kVp. Results show that the W anode combined with K-edge filters provides higher values of FOM for all breast thicknesses investigated. Nevertheless, the most suitable filter and tube potential depend on the breast thickness, and for t >= 6 cm, they also depend on breast glandularity. Particularly for thick and dense breasts, a W anode combined with K-edge filters can greatly improve the digital technique, with the values of FOM up to 200% greater than that obtained with the anode/filter combinations and tube potentials traditionally employed in mammography. For breasts with t < 4 cm, a general good performance was obtained with the W anode combined with 60 mu m of the Mo filter at 24-25 kVp, while 60 mu m of the Pd filter provided a general good performance at 24-26 kVp for t = 4 cm, and at 28-30 and 29-31 kVp for t = 6 and 8 cm, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an interacting particle system representing the spread of a rumor by agents on the d-dimensional integer lattice. Each agent may be in any of the three states belonging to the set {0,1,2}. Here 0 stands for ignorants, 1 for spreaders and 2 for stiflers. A spreader tells the rumor to any of its (nearest) ignorant neighbors at rate lambda. At rate alpha a spreader becomes a stifler due to the action of other (nearest neighbor) spreaders. Finally, spreaders and stiflers forget the rumor at rate one. We study sufficient conditions under which the rumor either becomes extinct or survives with positive probability.