19 resultados para oil analysis
Resumo:
Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.
Resumo:
The use of microalgae and cyanobacteria for the production of biofuels and other raw materials is considered a very promising sustainable technology due to the high areal productivity, potential for CO2 fixation and use of non-arable land. The production of oil by microalgae in a large scale plant was studied using emergy analysis. The joint transformity calculated for the base scenario was 1.32E + 5 sej/J, the oil transformity was 3.51E + 5 sej/J, the emergy yield ratio (EYR) was 1.09 and environmental loading ratio was 11.10 and the emergy sustainability index (ESI) was 0.10, highlighting some of the key challenges for the technology such as high energy consumption during harvesting, raw material consumption and high capital and operation costs. Alternatives scenarios and the sensitivity to process improvements were also assessed, helping prioritize further research based on sustainability impact. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Oil content and grain yield in maize are negatively correlated, and so far the development of high-oil high-yielding hybrids has not been accomplished. Then a fully understand of the inheritance of the kernel oil content is necessary to implement a breeding program to improve both traits simultaneously. Conventional and molecular marker analyses of the design III were carried out from a reference population developed from two tropical inbred lines divergent for kernel oil content. The results showed that additive variance was quite larger than the dominance variance, and the heritability coefficient was very high. Sixteen QTL were mapped, they were not evenly distributed along the chromosomes, and accounted for 30.91% of the genetic variance. The average level of dominance computed from both conventional and QTL analysis was partial dominance. The overall results indicated that the additive effects were more important than the dominance effects, the latter were not unidirectional and then heterosis could not be exploited in crosses. Most of the favorable alleles of the QTL were in the high-oil parental inbred, which could be transferred to other inbreds via marker-assisted backcross selection. Our results coupled with reported information indicated that the development of high-oil hybrids with acceptable yields could be accomplished by using marker-assisted selection involving oil content, grain yield and its components. Finally, to exploit the xenia effect to increase even more the oil content, these hybrids should be used in the Top Cross((TM)) procedure.
Resumo:
Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.
Resumo:
The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence has been used in many applications of magnetic resonance imaging (MRI) and low-resolution NMR (LRNMR) spectroscopy. Recently. CPMG was used in online LRNMR measurements that use long RF pulse trains, causing an increase in probe temperature and, therefore, tuning and matching maladjustments. To minimize this problem, the use of a low-power CPMG sequence based on low refocusing pulse flip angles (LRFA) was studied experimentally and theoretically. This approach has been used in several MRI protocols to reduce incident RF power and meet the specific absorption rate. The results for CPMG with LRFA of 3 pi/4 (CPMG(135)), pi/2 (CPMG(90)) and pi/4 (CPMG(45)) were compared with conventional CPMG with refocusing pi pulses. For a homogeneous field, with linewidth equal to Delta nu = 15 Hz, the refocusing flip angles can be as low as pi/4 to obtain the transverse relaxation time (T(2)) value with errors below 5%. For a less homogeneous magnetic field. Delta nu = 100 Hz, the choice of the LRFA has to take into account the reduction in the intensity of the CPMG signal and the increase in the time constant of the CPMG decay that also becomes dependent on longitudinal relaxation time (T(1)). We have compared the T(2) values measured by conventional CPMG and CPMG(90) for 30 oilseed species, and a good correlation coefficient, r = 0.98, was obtained. Therefore, for oilseeds, the T(2) measurements performed with pi/2 refocusing pulses (CPMG(90)), with the same pulse width of conventional CPMG, use only 25% of the RF power. This reduces the heating problem in the probe and reduces the power deposition in the samples. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Petroleum contamination impact on macrobenthic communities in the northeast portion of Todos os Santos Bay was assessed combining in multivariate analyses, chemical parameters such as aliphatic and polycyclic aromatic hydrocarbon indices and concentration ratios with benthic ecological parameters. Sediment samples were taken in August 2000 with a 0.05 m(2) van Veen grab at 28 sampling locations. The predominance of n-alkanes with more than 24 carbons, together with CPI values close to one, and the fact that most of the stations showed UCM/resolved aliphatic hydrocarbons ratios (UCM:R) higher than two, indicated a high degree of anthropogenic contribution, the presence of terrestrial plant detritus, petroleum products and evidence of chronic oil pollution. The indices used to determine the origin of PAH indicated the occurrence of a petrogenic contribution. A pyrolytic contribution constituted mainly by fossil fuel combustion derived PAH was also observed. The results of the stepwise multiple regression analysis performed with chemical data and benthic ecological descriptors demonstrated that not only total PAH concentrations but also specific concentration ratios or indices such as >= C24:< C24, An/178 and Fl/Fl + Py, are determining the structure of benthic communities within the study area. According to the BIO-ENV results petroleum related variables seemed to have a main influence on macrofauna community structure. The PCA ordination performed with the chemical data resulted in the formation of three groups of stations. The decrease in macrofauna density, number of species and diversity from groups III to I seemed to be related to the occurrence of high aliphatic hydrocarbon and PAH concentrations associated with fine sediments. Our results showed that macrobenthic communities in the northeast portion of Todos os Santos Bay are subjected to the impact of chronic oil pollution as was reflected by the reduction in the number of species and diversity. These results emphasise the importance to combine in multivariate approaches not only total hydrocarbon concentrations but also indices, isomer pair ratios and specific compound concentrations with biological data to improve the assessment of anthropogenic impact on marine ecosystems. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A scheme is presented in which an organic solvent environment in combination with surfactants is used to confine a natively unfolded protein inside an inverse microemulsion droplet. This type of confinement allows a study that provides unique insight into the dynamic structure of an unfolded, flexible protein which is still solvated and thus under near-physiological conditions. In a model system, the protein osteopontin (OPN) is used. It is a highly phosphorylated glycoprotein that is expressed in a wide range of cells and tissues for which limited structural analysis exists due to the high degree of flexibility and large number of post-translational modifications. OPN is implicated in tissue functions, such as inflammation and mineralisation. It also has a key function in tumour metastasis and progression. Circular dichroism measurements show that confinement enhances the secondary structural features of the protein. Small-angle X-ray scattering and dynamic light scattering show that OPN changes from being a flexible protein in aqueous solution to adopting a less flexible and more compact structure inside the microemulsion droplets. This novel approach for confining proteins while they are still hydrated may aid in studying the structure of a wide range of natively unfolded proteins.
Resumo:
Liquid biofuels can be produced from a variety of feedstocks and processes. Ethanol and biodiesel production processes based on conventional raw materials are already commercial, but subject to further improvement and optimization. Biofuels production processes using lignocellulosic feedstocks are still in the demonstration phase and require further R&D to increase efficiency. A primary tool to analyze the efficiency of biofuels production processes from an integrated point of view is offered by exergy analysis. To gain further insight into the performance of biofuels production processes, a simulation tool, which allows analyzing the effect of process variables on the exergy efficiency of stages in which chemical or biochemical reactions take place, were implemented. Feedstocks selected for analysis were parts or products of tropical plants such as the fruit and flower stalk of banana tree, palm oil, and glucose syrups. Results of process simulation, taking into account actual process conditions, showed that the exergy efficiencies of the acid hydrolysis of banana fruit and banana pulp were in the same order (between 50% and 60%), lower than the figure for palm oil transesterification (90%), and higher that the exergy efficiency of the enzymatic hydrolysis of flower stalk (20.3%). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Transesterification of palm oil with ethanol catalyzed by Pseudomonas fluorescens lipase immobilized on epoxy-polysiloxane-polyvinyl alcohol composite (epoxy-SiO2-PVA) was performed in a continuous packed-bed reactor (PBR). Two strategies were used for improving the miscibility of the substrates: the addition of the organic solvent tert-butanol and the surfactant Triton X-100. Results were compared to those obtained in a solventless reactor, which displayed a biphasic system that passed through the reactor. Using this system, the ethyl ester yield of 61.6 +/- 1.2% was obtained at steady state. Both Triton X-100 and tert-butanol systems were found to be suitable to promote the miscibility of the starting materials; however, the use of Triton X-100 reduced the yield to levels lower than 20%, because of the enzyme desorption from the support surface, as confirmed by scanning electron microscopy analysis. The best performance was found for the reactor running in the presence of tert-butanol which resulted in a stable operating system and an average yield of 87.6 +/- 2.5%. This strategy also gave high biocatalyst operational stability, revealing a half-life of 48 days and an inactivation constant of 0.6 X 10(-3) h(-1).
Resumo:
The main goal of this work was to develop a simple analytical method for quantification of glycerol based on the electrocatalytic oxidation of glycerol on the copper surface adapted in a flow injection system. Under optimal experimental conditions, the peak current response increases linearly with glycerol concentration over the range 60-3200 mg kg(-1) (equivalent to 3-160 mg L(-1) in solution). The repeatability of the electrode response in the flow injection analysis (FIA) configuration was evaluated as 5% (n = 10), and the detection limit of the method was estimated to be 5 mg kg(-1) in biodiesel (equivalent to 250 mu g L(-1) in solution) (S/N = 3). The sample throughput under optimised conditions was estimated to be 90 h(-1). Different types of biodiesel samples (B100), as in the types of vegetable oils or animal fats used to produce the fuels, were analysed (seven samples). The only sample pre-treatment used was an extraction of glycerol from the biodiesel sample containing a ratio of 5 mL of water to 250 mg of biodiesel. The proposed method improves the analytical parameters obtained by other electroanalytical methods for quantification of glycerol in biodiesel samples, and its accuracy was evaluated using a spike-and-recovery assay, where all the biodiesel samples used obtained admissible values according to the Association of Official Analytical Chemists. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
Mangrove ecosystems are tropical environments that are characterized by the interaction between the land and the sea. As such, this ecosystem is vulnerable to oil spills. Here, we show a culture-independent survey of fungal communities that are found in the sediments of the following two mangroves that are located on the coast of Sao Paulo State (Brazil): (1) an oil-spill-affected mangrove and (2) a nearby unaffected mangrove. Samples were collected from each mangrove forest at three distinct locations (transect from sea to land), and the samples were analyzed by quantitative PCR and internal transcribed spacer (ITS)-based PCR-DGGE analysis. The abundance of fungi was found to be higher in the oil-affected mangrove. Visual observation and correspondence analysis (CA) of the ITS-based PCR-DGGE profiles revealed differences in the fungal communities between the sampled areas. Remarkably, the oil-spilled area was quite distinct from the unaffected sampling areas. On the basis of the ITS sequences, fungi that are associated with the Basidiomycota and Ascomycota taxa were most common and belonged primarily to the genera Epicoccum, Nigrospora, and Cladosporium. Moreover, the Nigrospora fungal species were shown to be sensitive to oil, whereas a group that was described as "uncultured Basidiomycota" was found more frequently in oil-contaminated areas. Our results showed an increase in fungal abundance in the oil-polluted mangrove regions, and these data indicated potential fungal candidates for remediation of the oil-affected mangroves.
Resumo:
Objective The aim of the present study was to investigate the lipid profiles of the hepatic and adipose tissues of Wistar rats treated for 21 days with a diet high in saturated fat (high saturated fat, n=6) or high in hydrogenated fat, that is, having 50% partially hydrogenated vegetable oil in its composition (high hydrogenated fat, n=6), and compare them to those of a control group (control group, n=6). Methods Adipose tissue and total hepatic fat were higher in the saturated fat group than in the hydrogenated fat group. Hepatic lipid peroxidation was greatest in the saturated fat group, with consequent lower hepatic vitamin E and A levels. In contrast, serum vitamin A was highest in the saturated fat group. Analysis of hepatic lipid fractions found more cholesterol and less high density lipoprotein-cholesterol in the hydrogenated fat group. The hydrogenated fat group had the highest levels of triacylglycerols, followed by the saturated fat group. Results Significant amounts of trans fatty acids were detected in the hepatic and adipose tissues of the hydrogenated fat group. Among the identified fatty acids, 18:1n9 had a higher positive association with hepatic cholesterol and triacylglycerols, and a higher negative association with high density lipoprotein-cholesterol. Partially hydrogenated vegetable oil promotes greater accumulation of cholesterol and triacylglycerols in the liver than saturated fats. Conclusion Trans fatty acids were incorporated into hepatocytes and adipocytes in a highly efficient manner.
Resumo:
Rhipicephalus sanguineus is a widely distributed tick species that has adapted to the urban environment, and the dog is its main host. This species is also known as a vector and reservoir of diseases caused by bacteria, protozoa, and viruses. Currently, acaricides of synthetic chemical origin have been widely and indiscriminately used, leading to the development of resistance to these products by ticks and causing damage to the environment. Thus, these issues have made it necessary to seek other forms of controlling these ectoparasites. R. sanguineus was artificially infested in host New Zealand White rabbits, which were divided into four treatment groups: control (CG1 and CG2) and treatment (TG1 and TG2) groups. TG1 and TG2 hosts were provided with feed supplemented with esters of ricinoleic acid from castor oil at a concentration of 5 g/kg of feed for 7 and 15 days. Afterward, the ovaries of the female ticks were removed for analysis by transmission electron microscopy. The results showed ultrastructural changes in the somatic and germ cells of ovaries from TG1 and TG2 females, particularly with respect to chorion deposition, a protective membrane of the oocyte, as well as in the transport process of vitellogenic materials via the hemolymph and pedicel cells. Moreover, the mitochondria were less electron-dense and had cristae that were more disorganized than the mitochondria from CG1 and CG2 individuals. Thus, this study demonstrated the action of esters on the ovaries of R. sanguineus, signaling the prospect of a way to control this ectoparasite without affecting nontarget organisms or the environment. Microsc. Res. Tech., 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
In this paper we point some aspects of workers activities in offshore units in the oil industry. These units became more verticalized and have a greater number of operating systems. Our goal is to present the main difficulties that workers face in these units.
Resumo:
The stratified oil-water flow pattern is common in the petroleum industry, especially in offshore directional wells and pipelines. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The study of the wavy stratified flow pattern requires the characterization of the interfacial wave properties, i.e., average shape, celerity and geometric properties (amplitude and wavelength) as a function of holdup, inclination angle and phases' relative velocity. However, the data available in the literature on wavy stratified flow is scanty, especially in inclined pipes and when oil is viscous. This paper presents new geometric and kinematic interfacial wave properties as a function of a proposed two-phase Froude number in the wavy-stratified liquid-liquid flow. The experimental work was conducted in a glass test line of 12 m and 0.026 m id., oil (density and viscosity of 828 kg/m(3) and 0.3 Pa s at 20 degrees C, respectively) and water as the working fluids at several inclinations from horizontal (-20 degrees, -10 degrees, 0 degrees, 10 degrees, 20 degrees). The results suggest a physical relation between wave shape and the hydrodynamic stability of the stratified liquid-liquid flow pattern. (C) 2011 Elsevier Inc. All rights reserved.