20 resultados para nanocrystals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first observation of photoluminescence enhancement in Er3+ doped GeO2-Bi2O3 glasses containing silicon nanocrystals (Si-NCs) excited by a laser operating at 980 nm. The growth of approximate to 200% in the intensity of the Er3+ transition S-4(3/2) -> I-4(15/2) (545 nm) and of approximate to 100% for transitions H-2(11/2) -> I-4(15/2) (525 nm), F-4(9/2) -> I-4(15/2) (660 nm), and I-4(5/2) -> I-4(13/2) (1530 nm) was observed in comparison with a reference sample that does not contain Si-NCs. The results open a new road for obtaining efficient Stokes and anti-Stokes emissions in germanate composites doped with rare-earth ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This communication is a report of our initial research to obtain iron tungstate (FeWO4) nanocrystals by the microwave-hydrothermal method at 170 degrees C for 45 min. X-ray diffraction patterns showed that the FeWO4 nanocrystals prepared with polyethylene glycol-200 have a partial preferential orientation in the (011) plane in relation to other nanocrystals prepared with sodium bis(2-ethylhexyl) sulfosuccinate and water. Rietveld refinement data indicates that all nanocrystals are monophasic with wolframite-type monoclinic structures and exhibit different distortions on octahedral [FeO6]/[WO6] clusters. High resolution transmission electron microcopy revealed an oriented attachment mechanism for the growth of aggregated FeWO4 nanocrystals. Finally, we observed that the photoluminescence properties of these nanocrystals are affected by partial preferential orientation in the (011) plane and distortions on [FeO6]/[WO6] clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports evidence of the induced migration of Mn2+ ions in Cd(1-x)MnxS nanocrystals (NCs) by selecting a specific thermal treatment for each sample. The growth and characterization of these magnetic dots were investigated by atomic force microscopy (AFM), optical absorption (OA), and electronic paramagnetic resonance (EPR) techniques. The comparison of experimental and simulated EPR spectra confirms the incorporation of Mn2+ ions both in the core and at the dot surface regions. The thermal treatment of a magnetic sample, via selected annealing temperature and/or time, affects the fine and hyperfine interaction constants which modify the shape and the intensity of the EPR transition spectrum. The identification of these changes has allowed tracing the magnetic ion migration from core to surface regions of a dot as well as inferring the local density of the magnetic impurity ions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exploration of novel synthetic methodologies that control both size and shape of functional nanostructure opens new avenues for the functional application of nanomaterials. Here, we report a new and versatile approach to synthesize SnO2 nanocrystals (rutile-type structure) using microwave-assisted hydrothermal method. Broad peaks in the X-ray diffraction spectra indicate the nanosized nature of the samples which were indexed as a pure cassiterite tetragonal phase. Chemically and physically adsorbed water was estimated by TGA data and FT-Raman spectra to account for a new broad peak around 560 cm(-1) which is related to defective surface modes. In addition, the spherical-like morphology and low dispersed distribution size around 3-5 nm were investigated by HR-TEM and FE-SEM microscopies. Room temperature PL emission presents two broad bands at 438 and 764 nm, indicating the existence of different recombination centers. When the size of the nanospheres decreases, the relative intensity of 513 nm emission increases and the 393 nm one decreases. UV-Visible spectra show substantial changes in the optical absorbance of crystalline SnO2 nanoparticles while the existence of a small tail points out the presence of localized levels inside the forbidden band gap and supplies the necessary condition for the PL emission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyvinylpyrollidone (PVP)-capped platinum nanoparticles (NPs) are found to change shape from spherical to flat when deposited on mesoporous silica substrates (SBA-15). Transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and extended X-ray absorption fine structure (EXAFS) analyses are used in these studies. The SAXS results indicate that, after deposition, the 2 nm NPs have an average gyration radius 22% larger than in solution, while the EXAFS measurements indicate a decrease in first neighbor co-ordination number from 9.3 to 7.4. The deformation of these small capped NPs is attributed to interactions with the surface of the SBA-15 support, as evidenced by X-ray absorption near-edge structure (XANES).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the many methods developed for the synthesis of titanium dioxide, cathodic electrosynthesis has not received much attention because the resulting amorphous oxy-hydroxide matrix demands a further thermal annealing step to be transformed into crystalline titania. However, the possibility of filling deep recessed templates by the control of the solidliquid interface makes it a potentially suitable technique for the fabrication of porous scaffolds for photovoltaics and photocatalysis. Furthermore, a careful control of the crystallization process enables the growth of larger grains with lower density of grain boundaries, which act as electron traps that slow down electronic transport and promote charge recombination. In this report, well crystallized titania deposits were obtained by thermal annealing of amorphous deposits fabricated by cathodically assisted electrosynthesis on indium-tin oxide (ITO)substrates. The combined use of Raman spectroscopy and X-ray diffraction showed that the crystallization process is more intricate than previously assumed. It is shown that the amorphous matrix evolves into a rutile-free mixture of brookite and anatase at temperatures as low as 200 degrees C that persists up to 800 degrees C, when pure anatase dominates. The amount of brookite in the brookiteanatase mixture reaches a maximum at 400 degrees C. This very simple method for obtaining a brookiteanatase mixture and the ability to tune their proportions by thermal annealing is a promising alternative whose potential for solar cells and photocatalysis deserves a careful evaluation. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Letter reports on the synthesis of Ag-Au nanoparticles (NPs) with controlled structures and compositions via a galvanic replacement reaction between Ag NPs and AuCl4(aq)- followed by the investigation of their optical and catalytic properties. Our results showed the formation of porous walls, hollow interiors and increased Au content in the Ag-Au NPs as the volume of AuCl4(aq)- employed in the reaction was increased. These variations led to a red shift and broadening of the SPR peaks and an increase of up to 10.9-folds in the catalytic activity towards the reduction of 4-nitrophenol relative to Ag NPs. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the strong temperature-dependent thermal expansion, alpha(D), in CdS quantum dots (QDs) embedded in a glass template. We have performed a systematic study by using the temperature-dependent first-order Raman spectra, in CdS bulk and in dot samples, in order to assess the size dependence of alpha(D), and where the role of the compressive strain provoked by the glass host matrix on the dot response is discussed. We report the Gruneisen mode parameters and the anharmonic coupling constants for small CdS dots with mean radius R similar to 2.0 nm. We found that gamma parameters change, with respect to the bulk CdS, in a range between 20 and 50%, while the anharmonicity contribution from two-phonon decay channel becomes the most important process to the temperature-shift properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation of nanometer-sized structures of zinc oxide (ZnO) from zinc acetate and urea as raw materials was performed using conventional water bath heating and a microwave hydrothermal (MH) method in an aqueous solution. The oxide formation is controlled by decomposition of the added urea in the sealed autoclave. The influence of urea and the synthesis method on the final product formation are discussed. Broadband photoluminescence (PL) behavior in visible-range spectra was observed with a maximum peak centered in the green region which was attributed to different defects and the structural changes involved with ZnO crystals which were produced during the nucleation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of gold-platinum nanoparticles is heavily debated as theoretical calculations predict core-shell particles, whereas x-ray diffraction experiments frequently detect randomly mixed alloys. By calculating the structure of gold-platinum nanoparticles with diameters of up to approximate to 3.5 nm and simulating their x-ray diffraction patterns, we show that these seemingly opposing findings need not be in contradiction: Shells of gold are hardly visible in usual x-ray scattering, and the interpretation of Vegard's law is ambiguous on the nanoscale. DOI: 10.1103/PhysRevB.86.241403

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical and structural properties of planar and channel waveguides based on sol gel Er3+ and Yb3+ co-doped SiO2-ZrO2 are reported. Microstructured channels with high homogeneous surface profile were written onto the surface of multilayered densified films deposited on SiO2/Si substrates by a femtosecond laser etching technique. The densification of the planar waveguides was evaluated from changes in the refractive index and thickness, with full densification being achieved at 900 degrees C after annealing from 23 up to 500 min, depending on the ZrO2 content Crystal nucleation and growth took place together with densification, thereby producing transparent glass ceramic planar waveguides containing rare earth-doped ZrO2 nanocrystals dispersed in a silica-based glassy host Low roughness and crack-free surface as well as high confinement coefficient were achieved for all the compositions. Enhanced NIR luminescence of the Er3+ ions was observed for the Yb3+- codoped planar waveguides, denoting an efficient energy transfer from the Yb3+ to the Er3+ ion. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the synthesis (chemical co-precipitation reaction) and characterization (X-ray diffraction, magnetization, and electron paramagnetic resonance) of nanosized Cd1-xMnxS particles with manganese concentration up to x = 0.73. Though the literature reports that nanosized (bulk) CdS can incorporate as much as 30% (50%) of manganese ion within its crystal structure we found manganese segregation at the nanoparticle surface at doping levels as low as 14%. We found that both XRD and magnetization data support the presence of the Mn3O4 phase (observed spin-glass transition around 43 K) at the high manganese doping levels whereas the EPR data strongly suggest preferential incorporation of manganese at the nanoparticle's surface, even at low manganese doping levels. Analyses of the experimental data strongly suggest the preparation of well-defined core/shell (Cd1-xMnxS/Mn3O4) structures at higher levels of manganese doping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report herein for the first time a facile synthesis method to obtain SrTi1-xFexO3 nanocubes by means by a microwave-assisted hydrothermal (MAH) method at 140 degrees C. The effect of iron addition on the structural and morphological properties of SrTiO3 was investigated. X-ray diffraction measurements show that all STFO samples present a cubic perovskite structure. X-ray absorption spectroscopy at Fe absorption K-edge measurements revealed that iron ions are in a mixed Fe2+/Fe3+ oxidation state and preferentially occupy the Ti4+-site. UV-visible spectra reveal a reduction in the optical gap (E-gap) of STFO samples as the amount of iron is increased. An analysis of the data obtained by field emission scanning electron microscopy points out that the nanoparticles present a cubic morphology independently of iron content. According to high-resolution transmission electron microscopy results, these nanocubes are formed by a self-assembly process of small primary nanocrystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing interest in cellulose nanofibres from renewable sources for several industrial applications. However, there is a lack of information about one of the most abundant cellulose pulps: bleached Eucalyptus kraft pulp. The objective of the present work was to obtain Eucalyptus cellulose micro/nanofibres by three different processes, namely: refining, sonication and acid hydrolysis of the cellulose pulp. The refining was limited by the low efficiency of isolated nanofibrils, while sonication was more effective for this purpose. However, the latter process occurred at the expense of considerable damage to the cellulose structure. The whiskers obtained by acid hydrolysis resulted in nanostructures with lower diameter and length, and high crystallinity. Increasing hydrolysis reaction time led to narrower and shorter whiskers, but increased the crystallinity index. The present work contributes to the different widespread methods used for the production of micro/nanofibres for different applications. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this communication, we report the effect of different surfactants [cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and sodium bis(2-ethylhexyl)sulfosuccinate (AOT)] on the shape, growth and photoluminescence (PL) behavior of manganese tungstate (MnWO4) crystals synthesized by the microwave-hydrothermal (MH) method at 413 K for 45 min. These crystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and PL measurements. XRD patterns proved that these crystals have a monoclinic structure. FE-SEM images showed that MnWO4 crystals exhibit different shapes and growth mechanisms depending on the surfactant employed. The CTAB cationic surfactant promotes the hindrance of small nuclei that leads to the formation of flake-like nanocrystals, while SDS and AOT anionic surfactants promote a growth of crystals to plate-like and leaf-like crystals due to considerable size effect of counter-ions (RSO4- and RSO2O-) and an increase in Na+ ion remnants. UV-vis absorption spectroscopy revealed different optical band gap values due to modifications in the shape, surface and crystal size. Finally, the effect of surfactants on the crystal shapes and average crystal size distribution causing changes in the PL behavior of MnWO4 crystals was explained. (C) 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.