17 resultados para last glacial maximum
Resumo:
Last Glacial Maximum simulated sea surface temperature from the Paleo-Climate version of the National Center for Atmospheric Research Coupled Climate Model (NCAR-CCSM) are compared with available reconstructions and data-based products in the tropical and south Atlantic region. Model results are compared to data proxies based on the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface product (MARGO). Results show that the model sea surface temperature is not consistent with the proxy-data in all of the region of interest. Discrepancies are found in the eastern, equatorial and in the high-latitude South Atlantic. The model overestimates the cooling in the southern South Atlantic (near 50 degrees S) shown by the proxy-data. Near the equator, model and proxies are in better agreement. In the eastern part of the equatorial basin the model underestimates the cooling shown by all proxies. A northward shift in the position of the subtropical convergence zone in the simulation suggests a compression or/and an equatorward shift of the subtropical gyre at the surface, consistent with what is observed in the proxy reconstruction. (C) 2008 Elsevier B.V. All rights reserved
Resumo:
The paleoclimate version of the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR-CCSM3) is used to analyze changes in the water formation rates in the Atlantic, Pacific, and Indian Oceans for the Last Glacial Maximum (LGM), mid-Holocene (MH) and pre-industrial (PI) control climate. During the MH, CCSM3 exhibits a north-south asymmetric response of intermediate water subduction changes in the Atlantic Ocean, with a reduction of 2 Sv in the North Atlantic and an increase of 2 Sv in the South Atlantic relative to PI. During the LGM, there is increased formation of intermediate water and a more stagnant deep ocean in the North Pacific. The production of North Atlantic Deep Water (NADW) is significantly weakened. The NADW is replaced in large extent by enhanced Antarctic Intermediate Water (AAIW), Glacial North Atlantic Intermediate Water (GNAIW), and also by an intensified of Antarctic Bottom Water (AABW), with the latter being a response to the enhanced salinity and ice formation around Antarctica. Most of the LGM intermediate/mode water is formed at 27.4 < sigma(theta) < 29.0 kg/m(3), while for the MH and PI most of the subduction transport occurs at 26.5 < sigma(theta) < 27.4 kg/m(3). The simulated LGM Southern Hemisphere winds are more intense by 0.2-0.4 dyne/cm(2). Consequently, increased Ekman transport drives the production of intermediate water (low salinity) at a larger rate and at higher densities when compared to the other climatic periods.
Resumo:
In this study we analyzed the phylogeographic pattern and historical demography of an endemic Atlantic forest (AF) bird, Basileuterus leucoblepharus, and test the influence of the last glacial maximum (LGM) on its population effective size using coalescent simulations. We address two main questions: (i) Does B. leucoblepharus present population genetic structure congruent with the patterns observed for other AF organisms? (ii) How did the LGM affect the effective population size of B. leucoblepharus? We sequenced 914 bp of the mitochondrial gene cytochrome b and 512 bp of the nuclear intron 5 of beta-fibrinogen of 62 individuals from 15 localities along the AF. Both molecular markers revealed no genetic structure in B. leucoblepharus. Neutrality tests based on both loci showed significant demographic expansion. The extended Bayesian skyline plot showed that the species seems to have experienced demographic expansion starting around 300,000 years ago, during the late Pleistocene. This date does not coincide with the LGM and the dynamics of population size showed stability during the LGM. To further test the effect of the LGM on this species, we simulated seven demographic scenarios to explore whether populations suffered specific bottlenecks. The scenarios most congruent with our data were population stability during the LGM with bottlenecks older than this period. This is the first example of an AF organism that does not show phylogeographic breaks caused by vicariant events associated to climate change and geotectonic activities in the Quaternary. Differential ecological, environmental tolerances and habitat requirements are possibly influencing the different evolutionary histories of these organisms. Our results show that the history of organism diversification in this megadiverse Neotropical forest is complex. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
The supply of nutrients to the low-latitude thermocline is largely controlled by intermediate-depth waters formed at the surface in the high southern latitudes. Silicic acid is an essential macronutrient for diatoms, which are responsible for a significant portion of marine carbon export production. Changes in ocean circulation, such as those observed during the last deglaciation, would influence the nutrient composition of the thermocline and, therefore, the relative abundance of diatoms in the low latitudes. Here we present the first record of the silicic acid content of the Atlantic over the last glacial cycle. Our results show that at intermediate depths of the South Atlantic, the silicic acid concentration was the same at the Last Glacial Maximum (LGM) as it is today, overprinted by high silicic acid pulses that coincided with abrupt changes in ocean and atmospheric circulation during Heinrich Stadials and the Younger Dryas. We suggest these pulses were caused by changes in intermediate water formation resulting from shifts in the subpolar hydrological cycle, with fundamental implications for the nutrient supply to the Atlantic.
Resumo:
A thorough census of Admiralty Bay benthic biodiversity was completed through the synthesis of data, acquired from more than 30 years of observations. Most of the available records arise from successive Polish and Brazilian Antarctic expeditions organized since 1977 and 1982, respectively, but also include new data from joint collecting efforts during the International Polar Year (2007-2009). Geological and hydrological characteristics of Admiralty Bay and a comprehensive species checklist with detailed data on the distribution and nature of the benthic communities are provided. Approximately 1300 species of benthic organisms (excluding bacteria, fungi and parasites) were recorded from the bay`s entire depth range (0-500 m). Generalized classifications and the descriptions of soft-bottom and hard-bottom invertebrate communities are presented. A time-series analysis showed seasonal and interannual changes in the shallow benthic communities, likely to be related to ice formation and ice melt within the bay. As one of the best studied regions in the maritime Antarctic Admiralty Bay represents a legacy site, where continued, systematically integrated data sampling can evaluate the effects of climate change on marine life. Both high species richness and high assemblage diversity of the Admiralty Bay shelf benthic community have been documented against the background of habitat heterogeneity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Changes in the Brazilian continental margin`s oceanic productivity and circulation over the last 27,000 years were reconstructed based on sedimentological and microfaunal analyses. Our results suggest that oceanic paleoproductivity and the supply of terrigenous sediments to the Brazilian continental margin were higher during the Last Glacial Maximum (LGM) than during the Holocene. These changes may have been primarily influenced by significant sea level fluctuations that have occurred since the late Pleistocene. During the LGM, the lower sea level, higher productivity and lower sea-surface paleotemperatures may have been the result of the offshore displacement of the main flow of the Brazil Current. However, during the Holocene, the warm waters of the Brazil Current were displaced toward the coast. This displacement contributed to the increase in water temperature and prevented an increase in oceanic productivity. The decrease in terrigenous supply since the LGM could be related to the increase of the extension of the continental shelf and/or drier climatic conditions.
Resumo:
The Columbia Channel (CCS) system is a depositional system located in the South Brazilian Basin, south of the Vitoria-Trindade volcanic chain. It lies in a WNW-ESE direction on the continental rise and abyssal plain, at a depth of between 4200 and 5200 m. It is formed by two depocenters elongated respectively south and north of the channel that show different sediment patterns. The area is swept by a deep western boundary current formed by AABW. The system has been previously interpreted has a mixed turbidite-contourite system. More detailed study of seismic data permits a more precise definition of the modern channel morphology, the system stratigraphy as well as the sedimentary processes and control. The modern CCS presents active erosion and/or transport along the channel. The ancient Oligo-Neogene system overlies a ""upper Cretaceous-Paleogene"" sedimentary substratum (Unit U1) bounded at the top by a major erosive ""late Eocene-early Oligocene"" discordance (D2). This ancient system is subdivided into 2 seismic units (U2 and U3). The thick basal U2 unit constitutes the larger part of the system. It consists of three subunits bounded by unconformities: D3 (""Oligocene-Miocene boundary""), D4 (""late Miocene"") and D5 (""late Pliocene""). The subunits have a fairly tabular geometry in the shallow NW depocenter associated with predominant turbidite deposits. They present a mounded shape in the deep NE depocenter, and are interpreted as forming a contourite drift. South of the channel, the deposits are interpreted as a contourite sheet drift. The surficial U3 unit forms a thin carpet of deposits. The beginning of the channel occurs at the end of U1 and during the formation of D2. Its location seems to have been determined by active faults. The channel has been active throughout the late Oligocene and Neogene and its depth increased continuously as a consequence of erosion of the channel floor and deposit aggradation along its margins. Such a mixed turbidite-contourite system (or fan drift) is characterized by frequent, rapid lateral facies variations and by unconformities that cross the whole system and are associated with increased AABW circulation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A high-resolution, multi-proxy record has been used to determine the environmental changes during the Holocene on the southern Brazilian shelf Present oceanographic conditions reveal wind and freshwater input as the determinants of short-term productivity changes in the study area. Magnetic susceptibility and grain-size variations, together with proxies of productivity (organic carbon, carbon accumulation rate, Ba, Sr, and Ca content, Ba/Al, Ba/Ti, and Al/Ti ratios) were analyzed and compared with proxies of redox condition (V/Ti ratio), terrigenous input (Fe/Ca and Ti/Ca ratios), as well as other Element/Ti ratios, to evaluate the paleoceanographic and paleoclimatic changes over the period. The core covers a time interval of about 7650 years, with sedimentation rates varying from 0.025 to 0.250 cm a(-1), which represent time intervals of between 8 and 80 a per sample. There is a clear change in the sedimentation rate at about 2800 B.P. All grain-size and elemental results indicate the occurrence of conspicuous changes between 5200 and 5000 cal. B.P., as well as between 3000 and 2800 cal. B.P. A comparison of the results with the palynological information available from the adjacent continental areas suggests that the sedimentary changes in this last interval may be correlated with the onset of modern climatic conditions in South America, and especially, with the onset of the Plata Plume Water, a water mass that carries cold, less saline waters towards the north. However, minor changes are observed at ca. 1500 B.P. and are correlated with an increase in the atmospheric humidity. Furthermore, a time-series analysis undertaken using several proxies indicated the occurrence of Sub-Milankovitch cycles, which may be compared with those reported worldwide. (C) 2008 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
The Amazonian lowlands include large patches of open vegetation which contrast sharply with the rainforest, and the origin of these patches has been debated. This study focuses on a large area of open vegetation in northern Brazil, where d13C and, in some instances, C/N analyses of the organic matter preserved in late Quaternary sediments were used to achieve floristic reconstructions over time. The main goal was to determine when the modern open vegetation started to develop in this area. The variability in d13C data derived from nine cores ranges from -32.2 to -19.6 parts per thousand, but with nearly 60% of data above -26.5 parts per thousand. The most enriched values were detected only in ecotone and open vegetated areas. The development of open vegetation communities was asynchronous, varying between estimated ages of 6400 and 3000 cal a BP. This suggests that the origin of the studied patches of open vegetation might be linked to sedimentary dynamics of a late Quaternary megafan system. As sedimentation ended, this vegetation type became established over the megafan surface. In addition, the data presented here show that the presence of C4 plants must be used carefully as a proxy to interpret dry paleoclimatic episodes in Amazonian areas. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Four sediment cores were sampled from Lake Arari, located on Marajo Island at the mouth of the Amazon River. The island's vegetation cover is composed mainly of Amazon coastal forest, herbaceous and varzea vegetation. The integration of data on sedimentary structures, pollen, carbon and nitrogen isotope records, C/N ratios and radiocarbon ages allowed the identification of changes in vegetation and the sources of organic matter accumulated in the lake during the Holocene. The data indicate a relatively high flow energy, marine water influence and the presence of mangroves during the lagoon phase between 8990 and 8690 cal yr B.P. and 2310-2230 cal yr B.P. Between 2310 and 2230 cal yr B.P. and similar to 1000 cal yr B.P., the flow energy decreased and the mangroves were replaced by herbaceous vegetation following the decline in marine influence, likely due to the increase in freshwater river discharge. During the last 1000 years, Lake Arari was established in association with the expansion of herbaceous vegetation and the dominance of freshwater algae. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
Historical climatic refugia predict genetic diversity in lowland endemics of the Brazilian Atlantic rainforest. Yet, available data reveal distinct biological responses to the Last Glacial Maximum (LGM) conditions across species of different altitudinal ranges. We show that species occupying Brazil's montane forests were significantly less affected by LGM conditions relative to lowland specialists, but that pre-Pleistocene tectonics greatly influenced their geographic variation. Our conclusions are based on palaeoclimatic distribution models, molecular sequences of the cytochrome b, 16S, and RAG-1 genes, and karyotype data for the endemic frog Proceratophrys boiei. DNA and chromosomal data identify in P. boiei at least two broadly divergent phylogroups, which have not been distinguished morphologically. Cytogenetic results also indicate an area of hybridization in southern Sao Paulo. The location of the phylogeographic break broadly matches the location of a NW-SE fault, which underwent reactivation in the Neogene and led to remarkable landscape changes in southeastern Brazil. Our results point to different mechanisms underpinning diversity patterns in lowland versus montane tropical taxa, and help us to understand the processes responsible for the large number of narrow endemics currently observed in montane areas of the southern Atlantic forest hotspot. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In the present study, mitochondrial (mt)DNA sequence data were used to examine the genetic structure of fire-eye antbirds (genus Pyriglena) along the Atlantic Forest and the predictions derived from the river hypothesis and from a Last Glacial Maximum Pleistocene refuge paleomodel were compared to explain the patterns of genetic variation observed in these populations. A total of 266 individuals from 45 populations were sampled over a latitudinal transect and a number of phylogeographical and population genetics analytical approaches were employed to address these questions. The pattern of mtDNA variation observed in fire-eye antbirds provides little support for the view that populations were isolated by the modern course of major Atlantic Forest rivers. Instead, the data provide stronger support for the predictions of the refuge model. These results add to the mounting evidence that climatic oscillations appear to have played a substantial role in shaping the phylogeographical structure and possibly the diversification of many taxa in this region. However, the results also illustrate the potential for more complex climatic history and historical changes in the geographical distribution of Atlantic Forest than envisioned by the refuge model. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 900824.
Resumo:
Numerous studies use major element concentrations measured on continental margin sediments to reconstruct terrestrial climate variations. The choice and interpretation of climate proxies however differ from site to site. Here we map the concentrations of major elements (Ca, Fe, Al, Si, Ti, K) in Atlantic surface sediments (36 degrees N-49 degrees S) to assess the factors influencing the geochemistry of Atlantic hemipelagic sediments and the potential of elemental ratios to reconstruct different terrestrial climate regimes. High concentrations of terrigenous elements and low Ca concentrations along the African and South American margins reflect the dominance of terrigenous input in these regions. Single element concentrations and elemental ratios including Ca (e. g., Fe/Ca) are too sensitive to dilution effects (enhanced biological productivity, carbonate dissolution) to allow reliable reconstructions of terrestrial climate. Other elemental ratios reflect the composition of terrigenous material and mirror the climatic conditions within the continental catchment areas. The Atlantic distribution of Ti/Al supports its use as a proxy for eolian versus fluvial input in regions of dust deposition that are not affected by the input of mafic rock material. The spatial distributions of Al/Si and Fe/K reflect the relative input of intensively weathered material from humid regions versus slightly weathered particles from drier areas. High biogenic opal input however influences the Al/Si ratio. Fe/K is sensitive to the input of mafic material and the topography of Andean river drainage basins. Both ratios are suitable to reconstruct African and South American climatic zones characterized by different intensities of chemical weathering in well-understood environmental settings.
Resumo:
The Guiana Shield (GS) is one of the most pristine regions of Amazonia and biologically one of the richest areas on Earth. How and when this massive diversity arose remains the subject of considerable debate. The prevailing hypothesis of Quaternary glacial refugia suggests that a part of the eastern GS, among other areas in Amazonia, served as stable forested refugia during periods of aridity. However, the recently proposed disturbance-vicariance hypothesis proposes that fluctuations in temperature on orbital timescales, with some associated aridity, have driven Neotropical diversification. The expectations of the temporal and spatial organization of biodiversity differ between these two hypotheses. Here, we compare the genetic structure of 12 leaf-litter inhabiting frog species from the GS lowlands using a combination of mitochondrial and nuclear sequences in an integrative analytical approach that includes phylogenetic reconstructions, molecular dating, and Geographic Information System methods. This comparative and integrated approach overcomes the well-known limitations of phylogeographic inference based on single species and single loci. All of the focal species exhibit distinct phylogeographic patterns highlighting taxon-specific historical distributions, ecological tolerances to climatic disturbance, and dispersal abilities. Nevertheless, all but one species exhibit a history of fragmentation/isolation within the eastern GS during the Quaternary with spatial and temporal concordance among species. The signature of isolation in northern French Guiana (FG) during the early Pleistocene is particularly clear. Approximate Bayesian Computation supports the synchrony of the divergence between northern FG and other GS lineages. Substructure observed throughout the GS suggests further Quaternary fragmentation and a role for rivers. Our findings support fragmentation of moist tropical forest in the eastern GS during this period when the refuge hypothesis would have the region serving as a contiguous wet-forest refuge.
Resumo:
The regional monsoons of the world have long been viewed as seasonal atmospheric circulation reversal-analogous to a thermally-driven land-sea breeze on a continental scale. This conventional view of monsoons is now being integrated at a global scale and accordingly, a new paradigm has emerged which considers regional monsoons to be manifestations of global-scale seasonal changes in response to overturning of atmospheric circulation in the tropics and subtropics, and henceforth, interactive components of a singular Global Monsoon (GM) system. The paleoclimate community, however, tends to view 'paleomonsoon' (PM), largely in terms of regional circulation phenomena. In the past decade, many high-quality speleothem oxygen isotope (delta O-18) records have been established from the Asian Monsoon and the South American Monsoon regions that primarily reflect changes in the integrated intensities of monsoons on orbital-to-decadal timescales. With the emergence of these high-resolution and absolute-dated records from both sides of the Equator, it is now possible to test a concept of the 'Global-Paleo-Monsoon' (GPM) on a wide-range of timescales. Here we present a comprehensive synthesis of globally-distributed speleothem delta O-18 records and highlight three aspects of the GPM that are comparable to the modern GM: (1) the GPM intensity swings on different timescales; (2) their global extent; and (3) an anti-phased inter-hemispheric relationship between the Asian and South American monsoon systems on a wide range of timescales.