36 resultados para electron cyclotron resonance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensity of the 150 degrees C thermoluminescence peak of beta-irradiated carbonated synthetic A-type hydroxyapatite is approximately 12 times higher than that of the noncarbonated material. Deconvolution of the glow curve showed that this peak is a result of a trap distribution. An attempt was made to relate this thermoluminescence peak enhanced by carbonation with the ESR signal of the CO2- radical in natural or synthetic hydroxyapatite. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles. Concerning a mass percentage of silver below 0.1%, the nanocomposites are homogeneous, and there is no particle aggregation. As the mass percentage of silver is increased, the system becomes unstable, and there is particle flocculation with subsequent segregation of the alanine crystals. The nanocomposites have been analyzed by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and they have been tested as radiation detectors by means of electron spin resonance (ESR) spectroscopy in order to detect the paramagnetic centers created by the radiation. In fact, the sensitivity of the radiation detectors is optimized in the case of systems containing small particles (30 nm) that are well dispersed in the alanine matrix. As the agglomeration increases, particle growth (up to 1.5 mu m) and segregation diminish the sensitivity. In conclusion, nanostructured materials can be used for optimization of alanine sensitivity, by taking into account the influence of the particles size of the silver nanoparticles on the detection properties of the alanine radiation detectors, thus contributing to the construction of small-sized detectors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we investigated the properties of a fusogenic cationic lipid, diC14-amidine, and show that this lipid possesses per se the capacity to adopt either an interdigitated structure (below and around its transition temperature) or a lamellar structure (above the transition temperature). To provide experimental evidence of this lipid bilayer organization, phospholipids spin-labeled at different positions of the hydrocarbon chain were incorporated into the membrane and their electron spin resonance (ESR) spectra were recorded at different temperatures. For comparison, similar experiments were performed with dimyristoyl phosphatidylcholine, a zwitterionic lipid (DMPC) which adopts a bilayer organization over a broad temperature range. Lipid mixing between diC14-amidine and asolectin liposomes was more efficient below (10-15 degrees C) than above the transition temperature (above 25 degrees C). This temperature-dependent "fusogenic" activity of diC14-amidine liposomes is opposite to what has been observed so far for peptides or virus-induced fusion. Altogether, our data suggest that interdigitatiori is a highly fusogenic state and that interdigitation-mediated fusion occurs via an unusual temperature-dependent mechanism that remains to be deciphered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ground state interactions and excited states and transients formed after photolysis and photosensitization of 2-ethylaminodiphenylborinate (2APB) were studied by various techniques. The UV spectrum shows a large absorption band at 235 nm (epsilon = 14,500 M-1 cm(-1)) with a shoulder at 260 nm. The fluorescence spectra show increasing emission intensity with maximum at 300 nm, which shifts to the red up to 10(-3) M concentrations. At higher concentrations, the emission intensity decreases, probably due to the formation of aggregates. UV excitation in deareated solutions shows the formation of two transients at 300 and 360 nm. The latter has a lifetime of 5.7 mu s in ethanol and is totally quenched in the presence of oxygen and assigned to the triplet state of 2APB. The 300 nm peak is not affected by oxygen, has a lifetime in the order of milliseconds, and corresponds to a boron-centered radical species originated from the singlet state. A boron radical can also be obtained by electron transfer from triplet Safranine to the borinate (k(q) = 9.7 x 10(7) M-1 s(-1)) forming the semioxidized form of the dye. EPR experiments using DMPO show that dye-sensitized and direct UV-photolysis of 2ABP renders initially arylboron-centered radicals. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mixed-valence complex, [Fe(III)Fe(II)L1(mu-OAc)(2)]BF4 center dot H2O, where the ligand H(2)L1 = 2-{[[3-[((bis-(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The (FeFeII)-Fe-III and Fe-2(III) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1).S-2, where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The (FeFeII)-Fe-III complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe-2(III) complex showed an EPR spectrum due to population of the S-tot = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the (FeFeII)-Fe-III complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 x 10(-3) s(-1); K-m = 4.63 x 10(-3) mol L-1) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe-III. It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(mu-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we report results of continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy of vanadium oxide nanotubes. The observed EPR spectra are composed of a weak well-resolved spectrum of isolated V4+ ions on top of an intense and broad structure-less line shape, attributed to spin-spin exchanged V4+ clusters. With the purpose to deconvolute the structured weak spectrum from the composed broad line, a new approach based on the Krylov basis diagonalization method (KBDM) is introduced. It is based on the discrimination between broad and sharp components with respect to a selectable threshold and can be executed with few adjustable parameters, without the need of a priori information on the shape and structure of the lines. This makes the method advantageous with respect to other procedures and suitable for fast and routine spectral analysis, which, in conjunction with simulation techniques based on the spin Hamiltonian parameters, can provide a full characterization of the EPR spectrum. Results demonstrate and characterize the coexistence of two V4+ species in the nanotubes and show good progress toward the goal of obtaining high fidelity deconvoluted spectra from complex signals with overlapping broader line shapes. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vanadium oxide nanotubes (NTs) were synthesized by the sol-gel method followed by a long-term hydrothermal treatment. The obtained nanotubes have a multiwall structure, and 70% of vanadium ions are in the V4+ state. This percentage was derived by evaluating three components of the magnetic susceptibility; namely, (i) the paramagnetic Curie-Weiss behavior, (ii) antiferromagnetic dimers, and (iii) magnetic trimers. The as-made NTs were annealed in situ in the cavity of the electron paramagnetic resonance (EPR) spectrometer. The line shape changes irreversibly at 390 K, and the EPR susceptibility presents an anomaly at 425 K. These changes are interpreted as a partial oxidation of the V4+ ions and consequently a decrease in the concentration of the magnetic species. The quantification of the V4+ ions of the annealed NTs reveals a diminution to 39% of V4+, a weakening of the Curie-Weiss and antiferromagnetic dimers contributions, and the suppression of magnetic trimers. Vibrational studies confirm the decrease of V4+ amount. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749417]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we study the effect reduction in the density of dangling bond species D-0 states in rare-earth (RE) doped a-Si films as a function concentration for different RE-specimens. The films a-Si-1_(x) REx, RE=Y3+, Gd3+, Er3+, Lu3+) were prepared by co-sputtering and investigated by electron spin resonance (ESR) and Raman scattering experiments. According to our data the RE-doping reduces the ESR signal intensity of the D-0 states with an exponential dependence on the rare-concentration. Furthermore, the reduction produced by the magnetic rare-earths Gd3+ and Er3+ is remarkably greater than that caused by Y3+ and Lu3+, which led us to suggest an exchange-like coupling between the spin of the magnetic REs3+ and the spin of silicon neutral dangling bonds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lupulones, hops beta-acids, are one of the main constituents of the hops resin and have an important contribution to the overall bacteriostatic activity of hops during beer brewing. The use of lupulones as natural alternatives to antibiotics is increasing in the food industry and also in bioethanol production. However, lupulones are easy oxidizable and have been shown to be very reactive toward 1-hydroxyethyl radical with apparent bimolecular rate constants close to diffusion control k = 2.9 x 10(8) and 2.6 x 10(8) L mol(-1) s(-1) at 25.0 +/- 0.2 degrees C in ethanol water solution (10% of ethanol (v/v)) as probed by EPR and ESI-IT-MS/MS spin-trapping competitive kinetics, respectively. The free energy change for an electron-transfer mechanism is Delta G degrees = 106 kJ/mol as calculated from the oxidation peak potential experimentally determined for lupulones (1.1 V vs NHE) by cyclic voltammetry and the reported reduction potential for 1-hydroxyethyl radical. The major reaction products identified by LC-ESI-IT-MS/MS and ultrahigh-resolution accurate mass spectrometry (orbitrap FT-MS) are hydroxylated lupulone derivatives and 1-hydroxyethyl radical adducts. The lack of pH dependence for the reaction rate constant, the calculated free energy change for electron transfer, and the main reaction products strongly suggest the prenyl side chains at the hops beta-acids as the reaction centers rather than the beta,beta'-triketone moiety.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spin-1 anisotropic antiferromagnet NiCl2-4SC(NH2)(2) exhibits a field-induced quantum phase transition that is formally analogous to Bose-Einstein condensation. Here we present results of systematic high-field electron spin resonance (ESR) experimental and theoretical studies of this compound with a special emphasis on single-ion two-magnon bound states. In order to clarify some remaining discrepancies between theory and experiment, the frequency-field dependence of magnetic excitations in this material is reanalyzed. In particular, a more comprehensive interpretation of the experimental signature of single-ion two-magnon bound states is shown to be fully consistent with theoretical results. We also clarify the structure of the ESR spectrum in the so-called intermediate phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liposomes have been an excellent option as drug delivery systems, since they are able of incorporating lipophobic and/or lipophilic drugs, reduce drug side effects, increase drug targeting, and control delivery. Also, in the last years, their use reached the field of gene therapy, as non-viral vectors for DNA delivery. As a strategy to increase system stability, the use of polymerizable phospholipids has been proposed in liposomal formulations. In this work, through differential scanning calorimetry (DSC) and electron spin resonance (ESR) of spin labels incorporated into the bilayers, we structurally characterize liposomes formed by a mixture of the polymerizable lipid diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in a 1:1 molar ratio. It is shown here that the polymerization efficiency of the mixture (c.a. 60%) is much higher than that of pure DC8,9PC bilayers (c.a. 20%). Cationic amphiphiles (CA) were added, in a final molar ratio of 1:1:0.2 (DC8,9PC:DMPC:CA), to make the liposomes possible carriers for genetic material, due to their electrostatic interaction with negatively charged DNA. Three amphiphiles were tested, 1,2-dioleoyl-3-trimetylammonium-propane (DOTAP), stearylamine (SA) and trimetyl (2-miristoyloxietyl) ammonium chloride (MCL), and the systems were studied before and after UV irradiation. Interestingly, the presence of the cationic amphiphiles increased liposomes polymerization. MCL displaying the strongest effect. Considering the different structural effects the three cationic amphiphiles cause in DC8,9PC bilayers, there seem to be a correlation between the degree of DC8,9PC polymerization and the packing of the membrane at the temperature it is irradiated (gel phase). Moreover, at higher temperatures, in the bilayer fluid phase, more polymerized membranes are significantly more rigid. Considering that the structure and stability of liposomes at different temperatures can be crucial for DNA binding and delivery, we expect the study presented here contributes to the production of new carrier systems with potential applications in gene therapy. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study magneto-optical properties of monolayer graphene by means of quantum field theory methods in the framework of the Dirac model. We reveal a good agreement between the Dirac model and a recent experiment on giant Faraday rotation in cyclotron resonance [23]. We also predict other regimes when the effects are well pronounced. The general dependence of the Faraday rotation and absorption on various parameters of samples is revealed both for suspended and epitaxial graphene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Air Force Office of Scientific Research (AFOSR)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Er3+-Yb3+ co-doped MgAl2O4 phosphor powders have been prepared by the combustion method. The phosphor powders are well characterized by X-ray diffraction (XRD) and energy dispersive (EDX) techniques. The absorption spectrum of Er3+/Er3+-Yb3+ doped/co-doped phosphor powder has been recorded in the UV-Vis-NIR region of the electro-magnetic spectrum. The evidence for indirect pumping under 980 nm excitation of Er3+ from Yb3+ was observed in the MgAl2O4 matrix material. Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process in MgAl2O4:Er3+ phosphor. Three defect centres were identified in irradiated phosphor by ESR measurements which were carried out at room temperature and these were assigned to an O- ion and F+ centres. O- ion (hole centre) appears to correlate with the low temperature TSL peak at 210 A degrees C and one of the F+ centres (electron centre) is related to the high temperature peak at 460 A degrees C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hybrid materials were prepared by combining clay mineral (montmorillonite SWy-2 and saponite SapCa-1) and dyes extracted from the acai (Euterpe oleracea Mart.) fruit, which contains mainly anthocyanins from the 3-glucoside class, to increase the stability of the dye and facilitate its handling and storage. Clay minerals are common ingredients in therapeutic and pharmaceutical products and acai phytochemicals show disease prevention properties. The extract of the acai fruit was mixed with water suspensions of layered silicates in different proportions. The dyeclay hybrids presented incorporated organic material in amounts up to 24 wt.-%. X ray diffractometry and vibrational (FTIR and Raman) and electronic spectroscopic data showed that flavylium cations were successfully intercalated between the inorganic layers. Mass-coupled thermogravimetric analysis (TGA-MS) data showed a significant gain in the thermostability of the organic species in relation to anthocyanins in the extract. MS curves related to CO2 release (m/z = 44) are ascendant above 200 degrees C when the dye cations are confined to the inorganic structure. The radical scavenging activity of the hybrid materials was monitored by electron paramagnetic resonance (EPR) toward the stable radical DPPH (1,1-diphenyl-2-picrylhydrazyl) and compared to the activity of the acai extract. In addition to the fact that interaction with clay minerals improves the stability of the acai dyes against heat, their properties as radical scavengers are preserved after intercalation. The improvement in the properties of the nutraceutical species by intercalation by using biocompatible inorganic structures can be valuable for human therapy.