96 resultados para Tropical Montane Rain Forest


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-specific height-diameter models may be used to improve biomass estimates for forest inventories where only diameter at breast height (DBH) measurements are available. In this study, we fit height-diameter models for vegetation types of a tropical Atlantic forest using field measurements of height across plots along an altitudinal gradient. To fit height-diameter models, we sampled trees by DBH class and measured tree height within 13 one-hectare permanent plots established at four altitude classes. To select the best model we tested the performance of 11 height-diameter models using the Akaike Information Criterion (AIC). The Weibull and Chapman-Richards height-diameter models performed better than other models, and regional site-specific models performed better than the general model. In addition, there is a slight variation of height-diameter relationships across the altitudinal gradient and an extensive difference in the stature between the Atlantic and Amazon forests. The results showed the effect of altitude on tree height estimates and emphasize the need for altitude-specific models that produce more accurate results than a general model that encompasses all altitudes. To improve biomass estimation, the development of regional height-diameter models that estimate tree height using a subset of randomly sampled trees presents an approach to supplement surveys where only diameter has been measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to estimate the stock of biomass and organic carbon in a montane mixed shade forest located near General Carneiro, PR. 20 plots of 12 m x 12 m were installed, in which all trees with a CBH (Circumference at Breast Height) >= 31.4 cm were felled. From these the following information was obtained: total height, commercial height (agreed as being the morphological inversion point in the natural forest and the height of the first live branch), CBH, identification and collection of herbarium specimens. For the quantification of biomass in the understory and roots, three subunits 1 m x 1 m in each sampling unit were installed (12 m x 12 m) arranged in the lower left corner, center and diagonal upper right corner. To quantify accumulated litter at random, eight samples in each sampling unit were collected (12 m x 12 m), using a metal device measuring 0.25 m x 0.25 m. The montane mixed shade forest has more than 85% of its total biomass and total organic carbon stored in above ground plant structures. The total stock of organic carbon found in this study (104.7 Mg ha(-1)) demonstrates the importance of maintaining and preserving natural ecosystems as a way of maintaining this stock of organic carbon fixed in plant biomass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In tropical forests, the environmental heterogeneity can provide niche partitioning at local scales and determine the diversity and plant species distribution. Thus, this study aimed to investigate the variations of tree species structure and distribution in response to relief and soil profile features in a portion of the largest remnant of Brazilian Atlantic rain forest. All trees >= 5 cm diameter at breast height were recorded in two 0.99 ha plots. Topographic survey and a soil characterization were accomplished in both plots. Topsoil samples (0-20 cm) were taken from 88 quadrats and analyzed for chemical and particle size properties. Differences for both diversity and tree density were identified among three kinds of soils. A canonical correspondence analysis (CCA) indicated that the specific abundance varied among the three kinds of soils mapped: a shallow Udept - Orthent / Aquent gradient, probably due to differences in soil drainage. Nutrient content was less likely to affect tree species composition and distribution than relief, pH, Al3+, and soil texture. Some species were randomly distributed and did not show restriction to relief and soil properties. However, preferences in niche occupation detected in this study, derived from the catenary environments found, rise up as an important explanation for the high tree species diversity in tropical forests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questions What are the main features of the seed rain in a fragmented Atlantic forest landscape? Can seed rain species attributes (life form, dispersal mode, successional status) relate to the spatial arrangement (size and number of fragments, edge density and presence of corridor) of forest fragments in the landscape? How does the rain forest landscape structure affect the seed rain? Location Atlantic rainforest, Sao Paulo State, Southeastern Brazil. Methods Seed rain samples were collected monthly throughout 1yr, counted, identified and classified according to species dispersal mode, successional status and life form. Seed rain composition was compared with woody species near the seed traps. Relationships between seed rain composition and landscape spatial arrangement (fragment area, presence of corridor, number of fragments in the surroundings, proximity of fragments, and edge density) were tested using canonical correspondence analysis (CCA). Results We collected 20142 seeds belonging to 115 taxa, most of them early successional and anemochorous trees. In general, the seed rain had a species composition distinct from that of the nearby forest tree community. Small isolated fragments contained more seeds, mainly of anemochorous, epiphytic and early-successional species; large fragments showed higher association with zoochorous and late-successional species compared to small fragments. The CCA significantly distinguished the species dispersal mode according to fragment size and isolation, anemochorous species being associated to small and isolated fragments, and zoochorous species to larger areas and fragment aggregation. Nevertheless, a gradient driven by proximity (PROX) and edge density (ED) segregated lianas (in the positive extremity), early successional and epiphyte species (in the negative end); large fragments were positively associated to PROX and ED. Conclusions The results highlight the importance of the size and spatial arrangement of forest patches to promote habitat connectivity and improve the flux of animal-dispersed seeds. Landscape structure controls seed fluxes and affects plant dispersal capacity, potentially influencing the composition and structure of forest fragments. The seed rain composition may be used to assess the effects of landscape spatial structure on plant assemblages, and provide relevant information for biodiversity conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The significant biodiversity found in Brazil is a potential for the emergence of new zoonoses. Study in some places of the world suggest of the presence to hantavirus in tissues of bats. Researches of hantavirus in wildlife, out rodents, are very scarce in Brazil. Therefore we decided to investigate in tissues of different species of wild animals captured in the same region where rodents were detected positive for this virus. The present work analyzed ninety-one animals (64 rodents, 19 opossums, and 8 bats) from a region of the Atlantic forest in Biritiba Mirin City, São Paulo State, Brazil. Lungs and kidneys were used for RNA extraction. Findings The samples were screened for evidence of hantavirus infection by SYBR-Green-based real-time RT-PCR. Sixteen samples positive were encountered among the wild rodents, bats, and opossums. The detection of hantavirus in the lungs and kidneys of three marsupial species (Micoureus paraguayanus, Monodelphis ihering, and Didelphis aurita) as well in two species of bats (Diphylla ecaudata and Anoura caudifer) is of significance because these new hosts could represent an important virus reservoirs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the hydro-physical behavior in soils using toposequences is of great importance for better understanding the soil, water and vegetation relationships. This study aims to assess the hydro-physical and morphological characterization of soil from a toposequence in Galia, state of São Paulo, Brazil). The plot covers an area of 10.24 ha (320 × 320 m), located in a semi-deciduous seasonal forest. Based on ultra-detailed soil and topographic maps of the area, a representative transect from the soil in the plot was chosen. Five profiles were opened for the morphological description of the soil horizons, and hydro-physical and micromorphological analyses were performed to characterize the soil. Arenic Haplustult, Arenic Haplustalf and Aquertic Haplustalf were the soil types observed in the plot. The superficial horizons had lower density and greater hydraulic conductivity, porosity and water retention in lower tensions than the deeper horizons. In the sub-superficial horizons, greater water retention at higher tensions and lower hydraulic conductivity were observed, due to structure type and greater clay content. The differences observed in the water retention curves between the sandy E and the clay B horizons were mainly due to the size distribution, shape and type of soil pores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a recently developed computerized modeling technique to explore the long-term impacts of indigenous Amazonian hunting in the past, present, and future. The model redefines sustainability in spatial and temporal terms, a major advance over the static "sustainability indices" currently used to study hunting in tropical forests. We validate the model's projections against actual field data from two sites in contemporary Amazonia and use the model to assess various management scenarios for the future of Manu National Park in Peru. We then apply the model to two archaeological contexts, show how its results may resolve long-standing enigmas regarding native food taboos and primate biogeography, and reflect on the ancient history and future of indigenous people in the Amazon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lianas play a key role in forest structure, species diversity, as well as functional aspects of tropical forests. Although the study of lianas in the tropics has increased dramatically in recent years, basic information on liana communities for the Brazilian Atlantic Forest is still scarce. To understand general patterns of liana abundance and biomass along an elevational gradient (0-1,100 m asl) of coastal Atlantic Forest, we carried out a standard census for lianas a parts per thousand yen1 cm in five 1-ha plots distributed across different forest sites. On average, we found a twofold variation in liana abundance and biomass between lowland and other forest types. Large lianas (a parts per thousand yen10 cm) accounted for 26-35% of total liana biomass at lower elevations, but they were not recorded in montane forests. Although the abundance of lianas displayed strong spatial structure at short distances, the present local forest structure played a minor role structuring liana communities at the scale of 0.01 ha. Compared to similar moist and wet Neotropical forests, lianas are slightly less abundant in the Atlantic Forest, but the total biomass is similar. Our study highlights two important points: (1) despite some studies have shown the importance of small-scale canopy disturbance and support availability, the spatial scale of the relationships between lianas and forest structure can vary greatly among tropical forests; (2) our results add to the evidence that past canopy disturbance levels and minimum temperature variation exert influence on the structure of liana communities in tropical moist forests, particularly along short and steep elevational gradients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical forests are experiencing an increase in the proportion of secondary forests as a result of the balance between the widespread harvesting of old-growth forests and the regeneration in abandoned areas. The impacts of such a process on biodiversity are poorly known and intensely debated. Recent reviews and multi-taxa studies indicate that species replacement in wildlife assemblages is a consistent pattern, sometimes stronger than changes in diversity, with a replacement from habitat generalists to old-growth specialists being commonly observed during tropical forest regeneration. However, the ecological drivers of such compositional changes are rarely investigated, despite its importance in assessing the conservation value of secondary forests, and to support and guide management techniques for restoration. By sampling 28 sites in a continuous Atlantic forest area in Southeastern Brazil, we assessed how important aspects of habitat structure and food resources for wildlife change across successional stages, and point out hypotheses on the implications of these changes for wildlife recovery. Old-growth areas presented a more complex structure at ground level (deeper leaf litter, and higher woody debris volume) and higher fruit availability from an understorey palm, whereas vegetation connectivity, ground-dwelling arthropod biomass, and total fruit availability were higher in earlier successional stages. From these results we hypothetize that generalist species adapted to fast population growth in resource-rich environments should proliferate and dominate earlier successional stages, while species with higher competitive ability in resource-limited environments, or those that depend on resources such as palm fruits, on higher complexity at the ground level, or on open space for flying, should dominate older-growth forests. Since the identification of the drivers of wildlife recovery is crucial for restoration strategies, it is important that future work test and further develop the proposed hypotheses. We also found structural and functional differences between old-growth forests and secondary forests with more than 80 years of regeneration, suggesting that restoration strategies may be crucial to recover structural and functional aspects expected to be important for wildlife in much altered ecosystems, such as the Brazilian Atlantic forest. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimators of home-range size require a large number of observations for estimation and sparse data typical of tropical studies often prohibit the use of such estimators. An alternative may be use of distance metrics as indexes of home range. However, tests of correlation between distance metrics and home-range estimators only exist for North American rodents. We evaluated the suitability of 3 distance metrics (mean distance between successive captures [SD], observed range length [ORL], and mean distance between all capture points [AD]) as indexes for home range for 2 Brazilian Atlantic forest rodents, Akodon montensis (montane grass mouse) and Delomys sublineatus (pallid Atlantic forest rat). Further, we investigated the robustness of distance metrics to low numbers of individuals and captures per individual. We observed a strong correlation between distance metrics and the home-range estimator. None of the metrics was influenced by the number of individuals. ORL presented a strong dependence on the number of captures per individual. Accuracy of SD and AD was not dependent on number of captures per individual, but precision of both metrics was low with numbers of captures below 10. We recommend the use of SD and AD instead of ORL and use of caution in interpretation of results based on trapping data with low captures per individual.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (< 40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha(-1) (range 6.6 to 112.4) to 8.0 Mg ha(-1) (-2.5 to 23.0).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 30-year quantitative comparison of the bird community of a semideciduous forest remnant in the state of Sao Paulo. Few studies have evaluated long-term changes in avian abundance in forest remnants. To compare both species richness and abundance of the bird community in a forest fragment located in the municipality of Galia, state of Sao Paulo, southeastern Brazil, we surveyed forest birds using transect counts. We compared our results with a survey conducted 30 years earlier at the same locality and further classified bird species according to their food habits to eventually predict fluctuations of specific abundance. Although species with population declines predominated in the community, all trophic categories had species which increased their abundances. Most species prone to move around remnants decreased in abundance. We suggest that, regarding specific abundances, trophic categories may be equally affected as a result of fragmentation processes and that the forest regeneration of this remnant may have led to the loss of edge species. Species that suffered from abundance loss during this time period may become locally extinct in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Australian palm Archontophoenix cunninghamiana was introduced into Brazil as an ornamental species, and became a dangerous invader of remnant Atlantic forest patches, demanding urgent management actions that require careful planning. Its fruits are greatly appreciated by generalist birds and its sudden eradication could be as harmful as its permanence in the native community. Our hypothesis was that A. cunninghamiana phenology and fruit traits would have facilitated the invasion process. Hence the aim of the study was to characterize the reproductive phenology of the palm by registering flowering and fruiting events, estimating fruit production, and evaluating fruit nutritional levels. Phenological observations were carried out over 12 months and analyzed statistically. Fruit traits and production were estimated. Pulp nutritional levels were determined by analyzing proteins, lipids, and carbohydrates. Results showed constant flowering and fruiting throughout the year with a weak reproductive seasonality. On average, 3651 fruits were produced per bunch mainly in the summer. Fruit analysis revealed low nutrient contents, especially of proteins and lipids compared with other Brazilian native palm species. We concluded that the abundant fruit production all year round, and fruit attractivity mainly due to size and color, :may act positively on the reproductive performance and effective dispersion of A. cunninghamiana. As a management procedure which would add quality to frugivore food resources we suggest the replacement of A. cunninghamiana by the native palm Euterpe edulis, especially in gardens and parks near to Atlantic forest fragments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment of the suitability of anthropogenic landscapes for wildlife species is crucial for setting priorities for biodiversity conservation. This study aimed to analyse the environmental suitability of a highly fragmented region of the Brazilian Atlantic Forest, one of the world's 25 recognized biodiversity hotspots, for forest bird species. Eight forest bird species were selected for the analyses, based on point counts (n = 122) conducted in April-September 2006 and January-March 2009. Six additional variables (landscape diversity, distance from forest and streams, aspect, elevation and slope) were modelled in Maxent for (1) actual and (2) simulated land cover, based on the forest expansion required by existing Brazilian forest legislation. Models were evaluated by bootstrap or jackknife methods and their performance was assessed by AUC, omission error, binomial probability or p value. All predictive models were statistically significant, with high AUC values and low omission errors. A small proportion of the actual landscape (24.41 +/- 6.31%) was suitable for forest bird species. The simulated landscapes lead to an increase of c. 30% in total suitable areas. In average, models predicted a small increase (23.69 +/- 6.95%) in the area of suitable native forest for bird species. Being close to forest increased the environmental suitability of landscapes for all bird species; landscape diversity was also a significant factor for some species. In conclusion, this study demonstrates that species distribution modelling (SDM) successfully predicted bird distribution across a heterogeneous landscape at fine spatial resolution, as all models were biologically relevant and statistically significant. The use of landscape variables as predictors contributed significantly to the results, particularly for species distributions over small extents and at fine scales. This is the first study to evaluate the environmental suitability of the remaining Brazilian Atlantic Forest for bird species in an agricultural landscape, and provides important additional data for regional environmental planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Litterfall and litter decomposition are vital processes in tropical forests because they regulate nutrient cycling. Nutrient cycling can be altered by forest fragmentation. The Atlantic Forest is one of the most threatened biomes in the world due to human occupation over the last 500 years. This scenario has resulted in fragments of different size, age and regeneration phase. To investigate differences in litterfall and leaf decomposition between forest successional phases, we compared six forest fragments at three different successional phases and an area of mature forest on the Atlantic Plateau of Sao Paulo, Brazil. We sampled litter monthly from November 2008 to October 2009. We used litterbags to calculate leaf decomposition rate of an exotic species, Tipuana tipu (Fabaceae), over the same period litter sampling was performed. Litterfall was higher in the earliest successional area. This pattern may be related to the structural properties of the forest fragments, especially the higher abundance of pioneer species, which have higher productivity and are typical of early successional areas. However, we have not found significant differences in the decomposition rates between the studied areas, which may be caused by rapid stabilization of the decomposition environment (combined effect of microclimatic conditions and the decomposers activities). This result indicates that the leaf decomposition process have already been restored to levels observed in mature forests after a few decades of regeneration, although litterfall has not been entirely restored. This study emphasizes the importance of secondary forests for restoration of ecosystem processes on a regional scale.