24 resultados para Sodium Fusidate
Resumo:
Mejillonesite, ideally NaMg(2)(PO(3)OH)(PO(4))(OH)center dot H(5)O(2), is a new mineral approved by the CNMNC (IMA 2010-068). It occurs as isolated crystal aggregates in thin zones in fine-grained opal-zeolite aggregate on the north slope of Cerro Mejillones, Antofagasta, Chile. Closely associated minerals are bobierrite, opal, clinoptilolite-Na, clinoptilolite-K, and gypsum. Mejillonesite forms orthorhombic, prismatic, and elongated thick tabular crystals up to 6 mm long, usually intergrown in radiating aggregates. The dominant form is pinacoid {100}. Prisms {hk0}, {h0l}, and {0kl} are also observed. The crystals are colorless, their streak is white, and the luster is vitreous. The mineral is transparent. It is non-fluorescent under ultraviolet light. Mohs' hardness is 4, tenacity is brittle. Cleavage is perfect on {100}, good on {010} and {001}, and fracture is stepped. The measured density is 2.36(1) g/cm(3); the calculated density is 2.367 g/cm(3). Mejillonesite is biaxial (-), alpha= 1.507(2), beta= 1.531(2), gamma= 1.531(2), 2V(meas) = 15(10)degrees, 2V(calc) = 0 degrees (589 nm). Orientation is X= a, Z= elongation direction. The mineral is non-pleochroic. Dispersion is r> v, medium. The IR spectrum contains characteristic bands of the Zundel cation (H(5)O(2)(+), or H(+)center dot 2H(2)O) and the groups P-OH and OH(-). The chemical composition is (by EDS, H(2)O by the Alimarin method, wt%): Na(2)O 9.19, MgO 26.82, P(2)O(5) 46.87, H(2)O 19, total 101.88. The empirical formula, based on 11 oxygen atoms, is Na(0.93)Mg(2.08)(PO(3)OH)(1.00) (PO(4)) (OH)(0.86) .0.95H(5)O(2) The strongest eight X-ray powder-diffraction lines [d in angstrom(I)(hkl)] are: 8.095(100)(200), 6.846(9) (210), 6.470(8)(111), 3.317(5)(302), 2.959(5)(132), 2.706(12)(113), 2.157(19)(333), and 2.153(9) (622). The crystal structure was solved on a single crystal (R = 0.055) and gave the following data: orthorhombic, Pbca, a = 16.295(1), b = 13.009(2), c = 8.434(1) angstrom, V= 1787.9(4) angstrom(3), Z = 8. The crystal structure of mejillonesite is based on a sheet (parallel to the b-c plane) formed by two types of MgO(6) octahedra, isolated tetrahedra PO(4) and PO(3)OH whose apical vertices have different orientation with respect to the sheet. The sheets are connected by interlayer, 5-coordinated sodium ions, proton hydration complexes, and hydroxyl groups. The structure of mejillonesite is related to that of angarfite, NaFe(5)(3+)(PO(4))(4)(OH)(4).4H(2)O and bakhchisaraitsevite, Na(2)Mg(5)(PO(4))(4)center dot 7H(2)O.
Resumo:
Dietary nitrite and nitrate have been reported as alternative sources of nitric oxide (NO). In this regard, we reported previously that sodium nitrite added to drinking water was able to exert antihypertensive effects in an experimental model of hypertension in a dose-dependent manner. Taking into consideration that nitrite is continuously converted to nitrate in the bloodstream, here we expanded our previous report and evaluate whether a single daily dose of sodium nitrite could exert antihypertensive effects in 2 kidney-1 clip (2K1C) hypertensive rats. Sham-operated and 2K1C rats were treated with vehicle or sodium nitrite (15 mg/kg/day) for 4 weeks. We evaluated the effects induced by sodium nitrite treatment on systolic blood pressure (SBP) and NO markers such as plasma nitrite, nitrite + nitrate (NOx), cGMP, and blood levels of nitrosyl-hemoglobin. In addition, we also evaluated effects of nitrite on oxidative stress and antioxidant enzymes. Dihydroethidium (DHE) was used to evaluate aortic reactive oxygen species (ROS) production by fluorescence microscopy, and plasma levels of thiobarbituric acid-reactive species (TBARS) were measured in plasma samples from all experimental groups. Red blood cell superoxide dismutase (SOD) and catalase activity were evaluated with commercial kits. Sodium nitrite treatment reduced SBP in 2K1C rats (P < 0.05). We found lower plasma nitrite and NOx levels in 2K1C rats compared with normotensive controls (both P < 0.05). Nitrite treatment restored the lower levels of nitrite and NOx. While no change was found in the blood levels of nitrosyl-hemoglobin (P > 0.05), nitrite treatment increased the plasma levels of cGMP in 2K1C rats (P < 0.05). Higher plasma TBARS levels and aortic ROS levels were found in hypertensive rats compared with controls (P < 0.05), and nitrite blunted these alterations. Lower SOD and catalase activities were found in 2K1C hypertensive rats compared with controls (both P < 0.05). Nitrite treatment restored SOD activity (P < 0.05), whereas catalase was not affected. These data suggest that even a single daily oral dose of sodium nitrite is able to lower SBP and exert antioxidant effects in renovascular hypertension.
Resumo:
Aims: The goal of the current study was to evaluate the impact of maternal sodium intake during gestation on the systemic and renal renin-angiotensin-aldosterone-system (RAAS) of the adult offspring. Main methods: Female Wistar rats were fed high- (HSD-8.0% NaCl) or normal-sodium diets (NSD-1.3% NaCl) from 8 weeks of age until the delivery of their first litter. After birth, the offspring received NSD. Tail-cuff blood pressure (TcBP) was measured in the offspring between 6 and 12 weeks of age. At 12 weeks of age, the offspring were subjected to either one week of HSD or low sodium diet (LSD-0.1 6%NaCl) feeding to evaluate RAAS responsiveness or to acute saline overload to examine sodium excretory function. Plasma (PRA) and renal renin content (RRC), serum aldosterone (ALDO) levels, and renal cortical and medullary renin mRNA expression levels were evaluated at the end of the study. Key findings: TcBP was higher among dams fed HSD, but no TcBP differences were observed among the offspring. Male offspring, however, exhibited increased TcBP after one week of HSD feeding, and this effect was independent of maternal diet. Increased RAAS responsiveness to the HSD and LSD was also observed in male offspring. The baseline levels of PRA. ALDO, and cortical and medullary renin gene expression were lower but the RRC levels were higher among HSD-fed male offspring (HSDoff). Conversely, female HSDoff showed reduced sodium excretion 4 h after saline overload compared with female NSDoff. Significance: High maternal sodium intake is associated with gender-specific changes in RAAS responsiveness among adult offspring. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Two structural properties in mixed alkali metal phosphate glasses that seem to be crucial to the development of the mixed ion effect in dc conductivity were systematically analyzed in Na mixed metaphosphates: the local order around the mobile species, and their distribution and mixing in the glass network. The set of glasses considered here, Na1-xMxPO3 with M = Li, Ag, K, Rb, and Cs and 0 <= x <= 1, encompass a broad degree of size mismatch between the mixed cation species. A comprehensive solid-state nuclear magnetic resonance study was carried out using P-31 MAS, Na-23 triple quantum MAS, Rb-87 QCPMG, P-31-Na-23 REDOR, Na-23-Li-7 and Li-7-Li-6 SEDOR, and Na-23 spin echo decay. It was observed that the arrangement of P atoms around Na in the mixed glasses was indistinguishable from that observed in the NaPO3 glass. However, systematic distortions in the local structure of the 0 environments around Na were observed, related to the presence of the second cation. The average Na-O distances show an expansion/compression When Na+ ions are replaced by cations with respectively smaller/bigger radii. The behavior of the nuclear electric quadrupole coupling. constants indicates that this expansion reduces the local symmetry, while the compression produces the opposite effect These effects become marginally small when the site mismatch between the cations is small, as in Na-Ag mixed glasses. The present study confirms the intimate mixing of cation species at the atomic scale, but clear deviations from random mixing were detected in systems with larger alkali metal ions (Cs-Na, K-Na, Rb-Na). In contrast, no deviations from the statistical ion mixture were found in the systems Ag-Na and Li-Na, where mixed cations are either of radii comparable to (Ag+) or smaller than (Li+) Na+. The set of results supports two fundamental structural features of the models proposed to explain the mixed ion effect: the. structural specificity of the sites occupied by each cation species and their mixing at the atomic scale.
Resumo:
During their evolution, animals have developed a set of cysteine-rich peptides capable of binding various extracellular sites of voltage-gated sodium channels (VGSC). Sea anemone toxins that target VGSCs delay their inactivation process, but little is known about their selectivities. Here we report the investigation of three native type 1 toxins (CGTX-II, delta-AITX-Bcg1a and delta-AITX-Bcg1b) purified from the venom of Bunodosoma cangicum. Both delta-AITX-Bcg1a and delta-AITX-Bcg1b toxins were fully sequenced. The three peptides were evaluated by patch-clamp technique among Nav1.1-1.7 isoforms expressed in mammalian cell lines, and their preferential targets are Na(v)1.5 > 1.6 > 1.1. We also evaluated the role of some supposedly critical residues in the toxins which would interact with the channels, and observed that some substitutions are not critical as expected. In addition, CGTX-II and delta-AITX-Bcg1a evoke different shifts in activation/inactivation Boltzmann curves in Nav1.1 and 1.6. Moreover, our results suggest that the interaction region between toxins and VGSCs is not restricted to the supposed site 3 (S3-54 linker of domain IV), and this may be a consequence of distinct surface of contact of each peptide vs. targeted channel. Our data suggest that the contact surfaces of each peptide may be related to their surface charges, as CGTX-II is more positive than delta-AITX-Bcg1a and delta-AITX-Bcg1b. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This paper describes a new method for the preparation of sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate, DM-1, and 3-oxo-penta-1,4-dienyl-bis (2-methoxy-phenolate), DM-2. The aim of this work was to evaluate the antitumor effects of DM-1 in adjuvant chemotherapy for breast cancer treatment. Mice bearing mammary adenocarcinomas (Ehrlich ascites tumors) were treated with paclitaxel alone, DM-1 alone, and paclitaxel + DM-1. Tumor samples were used to perform cytological analysis by the Papanicolaou method and apoptosis analysis by annexin V and phosphorylated caspase 3. The paclitaxel + DM-1 group had decreased tumor areas and tumor volumes, and the frequency of metastasis was significantly reduced. This caused a decrease in cachexia, which is usually caused by the tumor. Furthermore, treatment with paclitaxel + DM-1 and DM-1 alone increased the occurrence of apoptosis up to 40% in tumor cells, which is 35% more than in the group treated with paclitaxel alone. This cell death was mainly caused through phosphorylated caspase 3 (11% increase in paclitaxel + DM-1 compared to the paclitaxel group), as confirmed by reduced malignancy criteria in the ascitic fluid. DM-1 emerges as a potential treatment for breast cancer and may act as an adjuvant in chemotherapy, enhancing antitumor drug activity with reduced side effects.
Resumo:
Sodium monofluoroacetate was first identified in Dichapetalum cymosum, a South African plant that can cause livestock poisoning and death. After, several other plants also showed to contain this toxin, which leads to the "sudden death". Mascagnia rigida, a well identified poisonous plant, commonly found in northeast of Brazil also cause sudden death in cattle, which shows clinical signs similar to those produced by the ingestion of plants that contain monofluoroacetate. Our aim was to identify the toxic compound present in the aqueous extract of M. rigida. For this purpose, the dried and milled plant was extracted; the extract was lyophilized and submitted to successive chromatographic process, until the desired purity of the active compound was achieved. The study of this material by planar chromatography and by infrared spectrometry indicated that the toxin can be a mixture of mono, di and trifluoroacetate. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The in vitro stability of cocaine in horse blood, sheep vitreous humour (VH) and homogenised deer muscle is described. The stability of cocaine in horse blood was of interest because many toxicology laboratories utilise horse blood for the preparation of calibration and check standards and the latter are typically stored during routine use. The storage stability of cocaine in human VH and muscle has not been previously reported. In the absence of blank human VH and muscle, cocaine stability under varying conditions was demonstrated in animal tissues. Blood and VH were stored with and without addition of NaF at room temperature (RT), 4 degrees C and -18 degrees C for 84 days. Muscle homogenates were prepared in water, water/2% NaF, and phosphate buffer (pH 6.0)/2% NaF, and stored for 31 days at RT, 4 degrees C and -18 degrees C. Cocaine stability in human muscle obtained from cocaine positive forensic cases was assessed following storage at -18 degrees C for 13 months. Cocaine and benzoylecgonine (BZE) were extracted using SPE and quantified by GC-MS/MS. Cocaine was stable for 7 days in refrigerated (4 degrees C) horse blood fortified with 1 and 2% NaF. In the absence of NaF, cocaine was not detectable by day 7 in blood stored at RT and 4 degrees C and had declined by 81% following storage at -18 degrees C. At 4 degrees C the rate of cocaine degradation in blood preserved with 2% NaF was significantly slower than with 1% NaF. The stability of cocaine in horse blood appeared to be less than that reported for human blood, probably attributable to the presence of carboxylesterase in horse plasma. Cocaine stored in VH at -18 degrees C was essentially stable for the study period whereas at 4 degrees C concentrations decreased by >50% in preserved and unpreserved VH stored for longer than 14 days. Fluoride did not significantly affect cocaine stability in VH. The stability of cocaine in muscle tissue homogenates significantly exceeded that in blood and VH at every temperature. In preserved and unpreserved samples stored at 4 degrees C and below, cocaine loss did not exceed 2%. The increased stability of cocaine in muscle was attributed to the low initial pH of post-mortem muscle. In tissue from one human case stored for 13 months at -18 degrees C the muscle cocaine concentration declined by only 15% (range: 5-22%). These findings promote the use of human muscle as a toxicological specimen in which cocaine may be detected for longer compared with blood or VH. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Pulmonary hypertension is associated with a worse prognosis after cardiac transplantation. The pulmonary hypertension reversibility test with sodium nitroprusside (SNP) is associated with a high rate of systemic arterial hypotension, ventricular dysfunction of the transplanted graft and high rates of disqualification from transplantation. Objective: This study was aimed at comparing the effects of sildenafil (SIL) and SNP on hemodynamic, neurohormonal and echocardiographic variables during the pulmonary reversibility test. Methods: The patients underwent simultaneously right cardiac catheterization, echocardiography, BNP measurement, and venous blood gas analysis before and after receiving either SNP (1 - 2 mu g/kg/min) or SIL (100 mg, single dose). Results: Both drugs reduced pulmonary hypertension, but SNP caused a significant systemic hypotension (mean blood pressure - MBP: 85.2 vs. 69.8 mm Hg; p < 0.001). Both drugs reduced cardiac dimensions and improved left cardiac function (SNP: 23.5 vs. 24.8%, p = 0.02; SIL: 23.8 vs. 26%, p < 0.001) and right cardiac function (SIL: 6.57 +/- 2.08 vs. 8.11 +/- 1.81 cm/s, p = 0.002; SNP: 6.64 +/- 1.51 vs. 7.72 +/- 1.44 cm/s, p = 0.003), measured through left ventricular ejection fraction and tissue Doppler, respectively. Sildenafil, contrary to SNP, improved venous oxygen saturation, measured on venous blood gas analysis. Conclusion: Sildenafil and SNP are vasodilators that significantly reduce pulmonary hypertension and cardiac geometry, in addition to improving biventricular function. Sodium nitroprusside, contrary to SIL, was associated with systemic arterial hypotension and worsening of venous oxygen saturation. (Arq Bras Cardiol 2012;99(3):848-856)
Resumo:
Diclofenac sodium (DS) is a non-steroidal anti-inflammatory drug that is widely prescribed for the treatment of rheumatoid arthritis and post-surgery analgesia. The active pharmaceutical ingredient is the anhydrous form; however, it can also exist in hydrate form. In this context, knowing the properties of the solid state is important and relevant in the pharmaceutical area because they have a significant impact on the solubility, bioavailability, and chemical stability of the drugs. In the present study, data from XRPD, FTIR spectroscopy, and thermal analysis were used for the identification and characterization of DS forms (anhydrous and hydrate). An HPLC method was optimized to evaluate the plasma concentration of DS in rabbits. The optimized method exhibited good linearity over the range 0.1-60 mu g/mL with correlation coefficients of >0.9991. The mean recovery was 100%. Precision and accuracy were determined within acceptable limits. Finally, to compare the pharmacological properties of anhydrous and hydrate DS forms, we investigated their effects in the febrile response induced by lipopolysaccharide from E. coli in rabbits. The results show that the antipyretic effect of anhydrous and hydrate DS forms are similar.
Resumo:
Osmoregulatory mechanisms can be vulnerable to electrolyte and/or endocrine environmental changes during the perinatal period, differentially programming the developing offspring and affecting them even in adulthood. The aim of this study was to evaluate whether availability of hypertonic sodium solution during the perinatal period may induce a differential programming in adult offspring osmoregulatory mechanisms. With this aim, we studied water and sodium intake after Furosemide-sodium depletion in adult offspring exposed to hypertonic sodium solution from 1 week before mating until postnatal day 28 of the offspring, used as a perinatal manipulation model [PM-Na group]. In these animals, we also identified the cell population groups in brain nuclei activated by Furosemide-sodium depletion treatment, analyzing the spatial patterns of Fos and Fos-vasopressin immunoreactivity. In sodium depleted rats, sodium and water intake were significantly lower in the PM-Na group vs. animals without access to hypertonic sodium solution [PM-Ctrol group]. Interestingly, when comparing the volumes consumed of both solutions in each PM group, our data show the expected significant differences between both solutions ingested in the PM-Ctrol group, which makes an isotonic cocktail: however, in the PM-Na group there were no significant differences in the volumes of both solutions consumed after Furosemide-sodium depletion, and therefore the sodium concentration of total fluid ingested by this group was significantly higher than that in the PM-Ctrol group. With regard to brain Fos immunoreactivity, we observed that Furosemide-sodium depletion in the PM-Na group induced a higher number of activated cells in the subfornical organ, ventral subdivision of the paraventricular nucleus and vasopressinergic neurons of the supraoptic nucleus than in the PM-Ctrol animals. Moreover, along the brainstem, we found a decreased number of sodium depletion-activated cells within the nucleus of the solitary tract of the PM-Na group. Our data indicate that early sodium availability induces a long-term effect on fluid drinking and on the cell activity of brain nuclei involved in the control of hydromineral balance. These results also suggest that availability of a rich source of sodium during the perinatal period may provoke a larger anticipatory response in the offspring, activating the vasopressinergic system and reducing thirst after water and sodium depletion, as a result of central osmosensitive mechanism alterations. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Iodide excess acutely downregulates NIS mRNA expression, as already demonstrated. PCCl3 cells treated or not with Nal, Nal + NaClO4 or Nal + Methimazole, for 30 min to 24 h, were used to further explore how iodide reduces NIS gene expression. NIS mRNA expression was evaluated by Real-Time PCR; its poly(A) tail length, by RACE-PAT; its translation rate, by polysome profile; total NIS content, by Western blotting. NIS mRNA decay rate was evaluated in actinomycin-D-treated cells, incubated with or without Nal for 0-6 h. Iodide treatment caused a reduction in NIS mRNA expression, half-life, poly(A) tail length, recruitment to ribosomes, as well as NIS protein expression. Perchlorate, but not methimazole, prevented these effects. Therefore, reduced poly(A) tail length of NIS mRNA seems to be related to its decreased half-life, in addition to its translation impairment. These data provide new insights about the molecular mechanisms involved in the rapid and posttranscriptional inhibitory effect of iodide on NIS expression. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study evaluated the effect of titanium tetrafluoride (TiF4) formulations on enamel carious demineralization in situ. Thirteen subjects took part in this cross-over, split-mouth, double-blind study performed in three phases of 14 d each. In each subject, two sound and two predemineralized specimens of bovine enamel were worn intra-orally and plaque accumulation was allowed. One sound and one predemineralized specimen in each subject was treated once with sodium fluoride (NaF) varnish or solution (Treatment A); TiF4 varnish or solution (Treatment B); or placebo varnish or no treatment (Treatment C). The initially sound enamel specimens were exposed to severe cariogenic challenge (20% sucrose, eight times daily for 5 min each time), whereas the predemineralized specimens were not. Eleven subjects were able to finish all experimental phases. The enamel alterations were quantified by surface hardness and transversal microradiography. Demineralization of previously sound enamel was reduced by all test formulations except for the NaF solution, while both TiF4 formulations were as effective as NaF varnish. For the predemineralized specimens, enamel surface hardness was increased only by TiF4 formulations, while subsurface mineral remineralization could not be seen in any group. Within the experimental protocol, TiF4 was able to decrease enamel demineralization to a similar degree as NaF varnish under severe cariogenic challenges, while only TiF4 formulations remineralized the enamel surface.
Resumo:
Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO2 efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (delta C-13) of stem wood alpha-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P-W) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P-W, but to a lesser extent compared with K fertilization. Neither K nor Na affected delta C-13 of stem wood alpha-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P-W resulted from drastic changes in carbon allocation.
Resumo:
1. Sodium is often a limiting nutrient for terrestrial animals, and may be especially sought by herbivores. Leafcutter ants are dominant herbivores in the Neotropics, and leafcutter foraging may be affected by nutritional demands of the colony and/or the demands of their symbiotic fungal mutualists. We hypothesized that leafcutter colonies are sodium limited, and that leafcutter ants will therefore forage specifically for sodium. 2. Previous studies demonstrated that leafcutter Atta cephalotes Linnaeus workers preferentially cut and remove paper baits treated with NaCl relative to water control baits. Atta cephalotes colonies in this study were presented with baits offering NaCl, Na2SO4, and KCl to test whether leafcutters forage specifically for sodium. Sucrose and water were used as positive and negative controls, respectively. 3. Atta foragers removed significantly more of the baits treated with NaCl and Na2SO4 than the KCl treatment, which did not differ from water. The NaCl and Na2SO4 treatments were collected at similar rates. We conclude A. cephalotes forage specifically for sodium rather than for anions (chloride) or solutes in general. This study supports the hypothesis that leafcutter ants are limited by, and preferentially forage for, sodium.