24 resultados para Single-photon absorption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we investigate the influence of temperature on the two-photon absorption (2PA) spectrum of all-trans-beta-carotene using the femtosecond white-light-continuum Z-scan technique. We observed that the 2PA cross-section decreases quadratically with the temperature. Such effect was modeled using a three-energy-level diagram within the sum-over-essential states approach, assuming temperature dependencies to the transition dipole moment and refractive index of the solvent. The results show that the transition dipole moments from ground to excited state and between the excited states, which governed the two-photon matrix element, have distinct behaviors with the temperature. The first one presents a quadratic dependence, while the second exhibits a linear dependence. Such effects were attributed mainly to the trans -> cis thermal interconversion process, which decreases the effective conjugation length, contributing to diminishing the transition dipole moments and, consequently, the 2PA cross-section.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we investigate the polarization effect (linear, elliptical and circular) on the two-photon absorption (2PA) properties of a chiral compound based in azoaromatic moieties using the femtosecond Z-scan technique with low repetition rate and low pulse energy. We observed a strong 2PA modulation between 800 nm and 960 nm as a function the polarization changes from linear through elliptical to circular. Such results were interpreted employing the sum-over-essential states approach, which allowed us to model the 2PA circular-linear dichroism effect and to identifier the overlapping of the excited electronic states responsible by the 2PA allowed band. (C) 2012 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Article reports a combined experimental and theoretical analysis on the one and two-photon absorption properties of a novel class of organic molecules with a pi-conjugated backbone based on phenylacetylene (JCM874, FD43, and FD48) and azoaromatic (YB3p2S) moieties. Linear optical properties show that the phenylacetylene-based compounds exhibit strong molar absorptivity in the UV and high fluorescence quantum yield with lifetimes of approximately 2.0 ns, while the azoaromatic-compound has a strong absorption in the visible region with very low fluorescence quantum yield. The two-photon absorption was investigated employing nonlinear optical techniques and quantum chemical calculations based on the response functions formalism within the density functional theory framework. The experimental data revealed well-defined 2PA spectra with reasonable cross-section values in the visible and IR. Along the nonlinear spectra we observed two 2PA allowed bands, as well as the resonance enhancement effect due to the presence of one intermediate one-photon allowed state. Quantum chemical calculations revealed that the 2PA allowed bands correspond to transitions to states that are also one-photon allowed, indicating the relaxation of the electric-dipole selection rules. Moreover, using the theoretical results, we were able to interpret the experimental trends of the 2PA spectra. Finally, using a few-energy-level diagram, within the sum-over-essential states approach, we observed strong qualitative and quantitative correlation between experimental and theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effect of solvent-induced conformational changes of poly(3,6-phenanthrene) on their two-photon absorption (2PA). Such effect was studied employing the wavelength-tunable femtosecond Z-scan technique and modeled using the sum-over-essential states approach. We observed a strong reduction of the 2PA cross-section when the sample was prepared in hexane (poor solvent) in comparison to chloroform (good solvent), which is related to the conformation adopted by the polymer in each case. In chloroform it adopts a random coil conformation, as opposed to the one-handed helix conformation in hexane. Our results pointed out that the coil to helix conformation change decreases the degree of molecular planarity of the polymer pi-conjugated backbone, which is primarily responsible for their optical nonlinearity, contributing to diminishing the effective transition dipole moments and, consequently, the 2PA cross-section. Moreover, by studying the nonlinear response with different light polarization, we showed that, although the solvent-induced conformational change does not alter the molecular symmetry of the polymer, it modifies considerably the direction of the transition dipole moments between the excited states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvent effects on the one- and two-photon absorption (IPA and 2PA) of disperse orange 3 (DO3) in dimethyl sulfoxide (DMSO) are studied using a discrete polarizable embedding (PE) response theory. The scheme comprises a quantum region containing the chromophore and an atomically granulated classical region for the solvent accounting for full interactions within and between the two regions. Either classical molecular dynamics (MD) or hybrid Car-Parrinello (CP) quantum/classical (QM/MM) molecular dynamics simulations are employed to describe the solvation of DO3 in DMSO, allowing for an analysis of the effect of the intermolecular short-range repulsion, long-range attraction, and electrostatic interactions on the conformational changes of the chromophore and also the effect of the solute-solvent polarization. PE linear response calculations are performed to verify the character, solvatochromic shift, and overlap of the two lowest energy transitions responsible for the linear absorption spectrum of DO3 in DMSO in the visible spectral region. Results of the PE linear and quadratic response calculations, performed using uncorrelated solute-solvent configurations sampled from either the classical or hybrid CP QM/MM MD simulations, are used to estimate the width of the line shape function of the two electronic lowest energy excited states, which allow a prediction of the 2PA cross-sections without the use of empirical parameters. Appropriate exchange-correlation functionals have been employed in order to describe the charge-transfer process following the electronic transitions of the chromophore in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and theoretical studies on the two-photon absorption properties of two oxazole derivatives: 2,5-diphenyloxazole (PPO) and 2-(4-biphenylyI)-5-phenyl-1,3,4-oxadiazole (PBD) are presented. The two-photon absorption cross-section spectra were determined by means of the Z-scan technique, from 460 up to 650 nm, and reached peak values of 84 GM for PBD and 27 GM for PPO. Density Functional Theory and response function formalism are used to determine the molecular structures and the one- and two-photon absorption properties and to assist in the interpretation of the experimental results. The Polarizable Continuum Model in one-photon absorption calculations is used to estimate solvent effects. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fluorene-based polymers are widely known materials due to a combination of features such as photoluminescence and electroluminescence, oxidative stability, and film-forming ability. However, studies reporting nonlinear optical properties in this class of conjugated polymer are scarce. Here, we report a new class of polyfluorene derivatives poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-1,4-phenylenevinylene), poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-2,5-thiophene), and poly[(9,9-di-hexylfluorenediylvinylene-alt-1,4-phenylenevinylene)-co-((9,9'-(3-t-butylpropanoate) fluorene-1,4-phenylene)] displaying high two-photon absorption (2PA) in the spectral range from a 490 to 1100 nm. The 2PA cross-section peak values for these materials are as high as 3000 Goppert Mayer (1 GM = 1 x 10-50 cm4 s/photon), which is related to the high degree of conjugation along the polymer backbone. The polymers that were used in this study presented a strong two-photon luminescence and also displayed optical limiting behavior, which, in combination with their well-established properties, make them highly suitable for nonlinear optical devices. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 148153, 2012

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonlinear index of refraction (n(2)) and the two-photon absorption coefficient (beta) of water-based ferrofluids made of magnetite nanocrystals of different sizes and with different coatings have been measured through the Z-scan technique, with ultrashort (femtoseconds) laser pulses. Their third-order susceptibility is calculated from the values of n(2) and beta. The influence of different particles' coatings and sizes on these nonlinear optical properties are investigated. The values of n(2) and beta depend more significantly on the nanoparticles' size than on the particular coating. We observe a decrease of beta as the nanoparticles' diameters decrease, although the optical gap is found to be the same for all samples. The results are interpreted considering modifications in the electronic orbital shape due to the particles' nanosize effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives. The purpose of this study was to evaluate the reactivity and polymerization kinetics behavior of a model dental adhesive resin with water-soluble initiator systems. Methods. A monomer blend based on Bis-GMA, TEGDMA and HEMA was used as a model dental adhesive resin, which was polymerized using a thioxanthone type (QTX) as a photoinitiator. Binary and ternary photoinitiator systems were formulated using 1 mol% of each initiator. The co-initiators used in this study were ethyl 4-dimethylaminobenzoate (EDAB), diphenyliodonium hexafluorophosphate (DPIHFP), 1,3-diethyl-2-thiobarbituric acid (BARB), p-toluenesulfinic acid and sodium salt hydrate (SULF). Absorption spectra of the initiators were measured using a UV-Vis spectrophotometer, and the photon absorption energy (PAE) was calculated. The binary system camphorquinone (CQ)/amine was used as a reference group (control). Twelve groups were tested in triplicate. Fourier-transform infrared spectroscopy (FTIR) was used to investigate the polymerization reaction during the photoactivation period to obtain the degree of conversion (DC) and maximum polymerization rate (R-p(max)) profile of the model resin. Results. In the analyzed absorption profiles, the absorption spectrum of QTX is almost entirely localized in the UV region, whereas that of CQ is in the visible range. With respect to binary systems, CQ + EDAB exhibited higher DC and R-p(max) values. In formulations that contained ternary initiator systems, the group CQ + QTX + EDAB was the only one of the investigated experimental groups that exhibited an R-p(max) value greater than that of CQ + EDAB. The groups QTX + EDAB + DPIHFP and QTX + DPIHFP + SULF exhibited values similar to those of CQ + EDAB with respect to the final DC; however, they also exhibited lower reactivity. Significance. Water-soluble initiator systems should be considered as alternatives to the widely used CQ/amine system in dentin adhesive formulations. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) was successfully employed to test several protocols and ideas in quantum information science. In most of these implementations, the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this paper, we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogue of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrates how non-classical correlations of separable states may be used to simulate quantum dynamics. The results obtained are completely equivalent to the optical scenario, where entanglement (between two field modes) may be present.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite increasing interest in pathological and non-pathological dissociation, few researchers have focused on the spiritual experiences involving dissociative states such as mediumship, in which an individual (the medium) claims to be in communication with, or under the control of, the mind of a deceased person. Our preliminary study investigated psychography - in which allegedly "the spirit writes through the medium's hand" - for potential associations with specific alterations in cerebral activity. We examined ten healthy psychographers - five less expert mediums and five with substantial experience, ranging from 15 to 47 years of automatic writing and 2 to 18 psychographies per month - using single photon emission computed tomography to scan activity as subjects were writing, in both dissociative trance and non-trance states. The complexity of the original written content they produced was analyzed for each individual and for the sample as a whole. The experienced psychographers showed lower levels of activity in the left culmen, left hippocampus, left inferior occipital gyrus, left anterior cingulate, right superior temporal gyrus and right precentral gyrus during psychography compared to their normal (non-trance) writing. The average complexity scores for psychographed content were higher than those for control writing, for both the whole sample and for experienced mediums. The fact that subjects produced complex content in a trance dissociative state suggests they were not merely relaxed, and relaxation seems an unlikely explanation for the underactivation of brain areas specifically related to the cognitive processing being carried out. This finding deserves further investigation both in terms of replication and explanatory hypotheses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pathophysiology of neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD) has not yet been completely elucidated. However, in the past few years, there have been great knowledge advances about intra-and extracellular proteins that may display impaired function or expression in AD, PD and other ND, such as amyloid beta (AB), alpha-synuclein, tau protein and neuroinfiammatory markers. Recent developments in the imaging techniques of positron emission tomography (PET) and single photon emission computed tomography (SPECT) now allow the non-invasive tracking of such molecular targets of known relevance to ND in vivo. This article summarizes recent findings of PET and SPECT studies using these novel methods, and discusses their potential role in the field of drug development for ND as well as future clinical applications in regard to differential diagnosis of ND and monitoring of disease progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of laser light to modify the material's surface or bulk as well as to induce changes in the volume through a chemical reaction has received great attention in the last few years, due to the possibility of tailoring the material's properties aiming at technological applications. Here, we report on recent progress of microstructuring and microfabrication in polymeric materials by using femtosecond lasers. In the first part, we describe how polymeric materials' micromachining, either on the surface or bulk, can be employed to change their optical and chemical properties promising for fabricating waveguides, resonators, and self-cleaning surfaces. In the second part, we discuss how two-photon absorption polymerization can be used to fabricate active microstructures by doping the basic resin with molecules presenting biological and optical properties of interest. Such microstructures can be used to fabricate devices with applications in optics, such as microLED, waveguides, and also in medicine, such as scaffolds for tissue growth.