39 resultados para Rna Transcripts


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH) prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. Results To identify such genes, a panel of expressed sequence tags (ESTs) enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA) protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi) to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. Conclusions This study has identified and characterised the expression profiles of members of the anhydrobiotic gene set in A. avenae. It also demonstrates the potential of RNAi for the analysis of anhydrobiosis and provides the first genetic data to underline the importance of effective antioxidant systems in metazoan desiccation tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane is an important sugar and energy crop that can be used efficiently for biofuels production. The development of sugarcane cultivars tolerant to drought could allow for the expansion of plantations to sub-prime regions. Knowledge on the mechanisms underlying drought responses and its relationship with carbon partition would greatly help to define routes to increase yield. In this work we studied sugarcane responses to drought using a custom designed oligonucleotide array with 21,901 different probes. The oligoarrays were designed to contain probes that detect transcription in both sense and antisense orientation. We validated the results obtained using quantitative real-time PCR (qPCR). A total of 987 genes were differentially expressed in at least one sample of sugarcane plants submitted to drought for 24, 72 and 120 h. Among them, 928 were sense transcripts and 59 were antisense transcripts. Genes related to Carbohydrate Metabolism, RNA Metabolism and Signal Transduction were selected for gene expression validation by qPCR that indicated a validation percentage of 90 %. From the probes presented on the array, 75 % of the sense probes and 11.9 % of the antisense probes have signal above background and can be classified as expressed sequences. Our custom sugarcane oligonucleotide array provides sensitivity and good coverage of sugarcane transcripts for the identification of a representative proportion of natural antisense transcripts (NATs) and sense-antisense transcript pairs (SATs). The antisense transcriptome showed, in most cases, co-expression with respective sense transcripts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA interference (RNAi) is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs) are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC) in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC). Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Splicing of primary transcripts is an essential process for the control of gene expression. Specific conserved sequences in premature transcripts are important to recruit the spliceosome machinery. The Saccharomyces cerevisiae catalytic spliceosome is composed of about 60 proteins and 5 snRNAs (U1, U2, U4/U6 and U5). Among these proteins, there are core components and regulatory factors, which might stabilize or facilitate splicing of specific substrates. Assembly of a catalytic complex depends on the dynamics of interactions between these proteins and RNAs. Cwc24p is an essential S. cerevisiae protein, originally identified as a component of the NTC complex, and later shown to affect splicing in vivo. In this work, we show that Cwc24p also affects splicing in vitro. We show that Cwc24p is important for the U2 snRNP binding to primary transcripts, co-migrates with spliceosomes, and that it interacts with Brr2p. Additionally, we show that Cwc24p is important for the stable binding of Prp19p to the spliceosome. We propose a model in which Cwc24p is required for stabilizing the U2 association with primary transcripts, and therefore, especially important for splicing of RNAs containing non- consensus branchpoint sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Non-coding RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease. Methods In this study, gene expression profiles of CD34+ cells of 4 patients with MDS of refractory anemia with ringed sideroblasts (RARS) subgroup and stromal cells of 3 patients with MDS-RARS were compared with healthy individuals using 44 k combined intron-exon oligoarrays, which included probes for exons of protein-coding genes, and for non-coding RNAs transcribed from intronic regions in either the sense or antisense strands. Real-time RT-PCR was performed to confirm the expression levels of selected transcripts. Results In CD34+ cells of MDS-RARS patients, 216 genes were significantly differentially expressed (q-value ≤ 0.01) in comparison to healthy individuals, of which 65 (30%) were non-coding transcripts. In stromal cells of MDS-RARS, 12 genes were significantly differentially expressed (q-value ≤ 0.05) in comparison to healthy individuals, of which 3 (25%) were non-coding transcripts. Conclusions These results demonstrated, for the first time, the differential ncRNA expression profile between MDS-RARS and healthy individuals, in CD34+ cells and stromal cells, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrate reductase (NR, EC 1.6.6.1) activity in higher plants is regulated by a variety of environmental factors and oscillates with a characteristic diurnal rhythm. In this study, we have demonstrated that the diurnal cycle of NR expression and activity in pineapple (Ananas comosus, cv. Smooth Cayenne) can be strongly modified by changes in the day/night temperature regime. Plants grown under constant temperature (28 degrees C light/dark) showed a marked increase in the shoot NR activity (NRA) during the first half of the light period, whereas under thermoperiodic conditions (28 degrees C light/15 degrees C dark) significant elevations in the NRA were detected only in the root tissues at night. Under both conditions, increases in NR transcript levels occurred synchronically about 4 h prior to the corresponding elevation of the NRA. Diurnal analysis of endogenous cytokinins indicated that transitory increases in the levels of zeatin, zeatin riboside and isopentenyladenine riboside coincided with the accumulation of NR transcripts and preceded the rise of NRA in the shoot during the day and in the root at night, suggesting these hormones as mediators of the temperature-induced modifications of the NR cycle. Moreover, these cytokinins also induced NRA in pineapple when applied exogenously. Altogether, these results provide evidence that thermoperiodism can modify the diurnal cycle of NR expression and activity in pineapple both temporally and spatially, possibly by modulating the day/night changes in the cytokinin levels. A potential relationship between the day/night NR cycle and the photosynthetic pathway performed by the pineapple plants (C(3) or CAM) is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleoli, nuclear organelles in which ribosomal RNA is synthesized and processed, emerge from nucleolar organizers (NORs) located in distinct chromosomal regions. In polytene nuclei of dipterans, nucleoli of some species can be observed under light microscopy exhibiting distinctive morphology: Drosophila and chironomid species display well-formed nucleoli in contrast to the fragmented and dispersed nucleoli seen in sciarid flies. The available data show no apparent relationship between nucleolar morphology and location of NORs in Diptera. The regulation of rRNA transcription involves controlling both the transcription rate per gene as well as the proportion of rRNA genes adopting a proper chromatin structure for transcription, since active and inactive rRNA gene copies coexist in NORs. Transcription units organized in nucleosomes and those lacking canonical nucleosomes can be analyzed by the method termed psoralen gel retarding assay (PGRA), allowing inferences on the ratio of active to inactive rRNA gene copies. In this work, possible connections between chromosomal location of NORs and proportion of active rRNA genes were studied in Drosophila melanogaster, and in chironomid and sciarid species. The data suggested a link between location of NORs and proportion of active rRNA genes since the copy number showing nucleosomal organization predominates when NORs are located in the pericentric heterochromatin. The results presented in this work are in agreement with previous data on the chromatin structure of rRNA genes from distantly related eukaryotes, as assessed by the PGRA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contents The aim of this study was to determine the effect of temporary inhibition of meiosis using the cyclin-dependent kinase inhibitor butyrolactone I (BLI) on gene expression in bovine oocytes and cumulus cells. Immature bovine cumulusoocyte complexes (COCs) were assigned to groups: (i) Control COCs collected immediately after recovery from the ovary or (ii) after in vitro maturation (IVM) for 24 h, (iii) Inhibited COCs collected 24 h after incubation with 100 mu m BLI or (iv) after meiotic inhibition for 24 h followed by IVM for a further 22 h. For mRNA relative abundance analysis, pools of 10 denuded oocytes and respective cumulus cells were collected. Transcripts related to cell cycle regulation and oocyte competence were evaluated in oocytes and cumulus cells by quantitative real-time PCR (qPCR). Most of the examined transcripts were downregulated (p < 0.05) after IVM in control and inhibited oocytes (19 of 35). Nine transcripts remained stable (p > 0.05) after IVM in control oocytes; only INHBA did not show this pattern in inhibited oocytes. Seven genes were upregulated after IVM in control oocytes (p < 0.05), and only PLAT, RBP1 and INHBB were not upregulated in inhibited oocytes after IVM. In cumulus cells, six genes were upregulated (p < 0.05) after IVM and eight were downregulated (p < 0.05). Cells from inhibited oocytes showed the same pattern of expression regarding maturation profile, but were affected by the temporary meiosis inhibition of the oocyte when the same maturation stages were compared between inhibited and control groups. In conclusion, changes in transcript abundance in oocytes and cumulus cells during maturation in vitro were mostly mirrored after meiotic inhibition followed by maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We ascertained a Brazilian family with nine individuals affected by autosomal dominant nonsyndromic sensorineural hearing loss. The bilateral hearing loss affected mainly mid-high frequencies, was apparently stable with an early onset. Microsatellites close to the DFNA8/DFNA12 locus, which harbors the TECTA gene, showed significant multipoint lod scores (32) close to marker D11S4107. Sequencing of the exons and exon-intron boundaries of the TECTA gene in one affected subject revealed the deletion c.5383 + 5delGTGA in the 5' end of intron 16, that includes the last two bases of the donor splice site consensus sequence. This mutation segregates with deafness within the family. To date, 33 different TECTA mutations associated with autossomal dominant hearing loss have been described. Among them is the mutation reported herein, first described by Hildebrand et al. (2011) in a UK family. The audioprofiles from the UK and Brazilian families were similar. In order to investigate the transcripts produced by the mutated allele, we performed cDNA analysis of a lymphoblastoid cell line from an affected heterozygote with the c.5383 + 5delGTGA and a noncarrier from the same family. The analysis allowed us to identify an aberrant transcript with skipping of exon 16, without affecting the reading frame. One of the dominant TECTA mutations already described, a synonymous substitution in exon 16 (c.5331 G<A), was also shown to affect splicing resulting in an aberrant transcript lacking exon 16. Despite the difference in the DNA level, both the synonymous substitution in exon 16 (c.5331 G<A) and the mutation described herein affect splicing of exon 16, leading to its skipping. At the protein level they would have the same effect, an in-frame deletion of 37 amino-acids (p.S1758Y/G1759_N1795del) probably leading to an impaired function of the ZP domain. Thus, like the TECTA missense mutations associated with dominant hearing loss, the c5383 + 5delGTGA mutation does not have an inactivating effect on the protein. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The preservation of biological samples at a low temperature is important for later biochemical and/or histological analyses. However, the molecular viability of thawed samples has not been studied sufficiently in depth. The present study was undertaken to evaluate the viability of intact tissues, tissue homogenates, and isolated total RNA after defrosting for more than twenty-four hours. METHODS: The molecular viability of the thawed samples (n = 82) was assessed using the A260/A280 ratio, the RNA concentration, the RNA integrity, the level of intact mRNA determined by reverse transcriptase polymerase chain reaction, the protein level determined by Western blotting, and an examination of the histological structure. RESULTS: The integrity of the total RNA was not preserved in the thawed intact tissue, but the RNA integrity and level of mRNA were perfectly preserved in isolated defrosted samples of total RNA. Additionally, the level of beta-actin protein was preserved in both thawed intact tissue and homogenates. CONCLUSION: Isolated total RNA does not undergo degradation due to thawing for at least 24 hours, and it is recommended to isolate the total RNA as soon as possible after tissue collection. Moreover, the protein level is preserved in defrosted tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-beta-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-beta-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-beta-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The innate immune response of insects is one of the factors that may dictate their susceptibility to viral infection. Two immune signaling pathways, Toll and JAK-STAT, and the RNA interference (RNAi) pathway are involved in Aedes aegypti responses against dengue virus (DENV), however natural differences in these antiviral defenses among mosquito populations have not been studied. Here, two field Ae. aegypti populations from distinct ecological environments, one from Recife and the other from Petrolina (Brazil), and a laboratory strain were studied for their ability to replicate a primary isolate of dengue virus serotype 2 (DENV-2). Virus infectivity and replication were determined in insect tissues collected after viral exposure through reverse-transcription real time PCR (RT-PCR). The expression of a transcript representing these defense mechanisms (Toll, JAK-STAT and RNAi) in the midgut and fat body was studied with RTPCR to evaluate variations in innate immune mechanisms possibly employed against DENV. Analyses of infection rates indicated that the field populations were more susceptible to DENV-2 infection than the lab strain. There were distinct expression patterns among mosquito populations, in both control and infected insects. Moreover, lower expression of immune molecules in DENV-2-infected insects compared to controls was observed in the two field populations. These results suggest that natural variations in vector competence against DENV may be partly due to differences in mosquito defense mechanisms, and that the down-regulation of immune transcripts after viral infection depends on the insect strain. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5' ETS molecule using three distinct methods and located the acceptor site between two known 5' ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5' ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5' ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5' ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Thyroid hormones (THs) are known to regulate protein synthesis by acting at the transcriptional level and inducing the expression of many genes. However, little is known about their role in protein expression at the post-transcriptional level, even though studies have shown enhancement of protein synthesis associated with mTOR/p70S6K activation after triiodo-l-thyronine (T3) administration. On the other hand, the effects of TH on translation initiation and polypeptidic chain elongation factors, being essential for activating protein synthesis, have been poorly explored. Therefore, considering that preliminary studies from our laboratory have demonstrated an increase in insulin content in INS-1E cells in response to T3 treatment, the aim of the present study was to investigate if proteins of translational nature might be involved in this effect. Methods: INS-1E cells were maintained in the presence or absence of T3 (10(-6) or 10(-8) M) for 12 hours. Thereafter, insulin concentration in the culture medium was determined by radioimmunoassay, and the cells were processed for Western blot detection of insulin, eukaryotic initiation factor 2 (eIF2), p-eIF2, eIF5A, EF1A, eIF4E binding protein (4E-BP), p-4E-BP, p70S6K, and p-p70S6K. Results: It was found that, in parallel with increased insulin generation, T3 induced p70S6K phosphorylation and the expression of the translational factors eIF2, eIF5A, and eukaryotic elongation factor 1 alpha (eEF1A). In contrast, total and phosphorylated 4E-BP, as well as total p70S6K and p-eIF2 content, remained unchanged after T3 treatment. Conclusions: Considering that (i) p70S6K induces S6 phosphorylation of the 40S ribosomal subunit, an essential condition for protein synthesis; (ii) eIF2 is essential for the initiation of messenger RNA translation process; and (iii) eIF5A and eEF1A play a central role in the elongation of the polypeptidic chain during the transcripts decoding, the data presented here lead us to suppose that a part of T3-induced insulin expression in INS-1E cells depends on the protein synthesis activation at the post-transcriptional level, as these proteins of the translational machinery were shown to be regulated by T3.