20 resultados para Oxygen-uptake Kinetics
Resumo:
Background: Changes in heart rate during rest-exercise transition can be characterized by the application of mathematical calculations, such as deltas 0-10 and 0-30 seconds to infer on the parasympathetic nervous system and linear regression and delta applied to data range from 60 to 240 seconds to infer on the sympathetic nervous system. The objective of this study was to test the hypothesis that young and middle-aged subjects have different heart rate responses in exercise of moderate and intense intensity, with different mathematical calculations. Methods: Seven middle-aged men and ten young men apparently healthy were subject to constant load tests (intense and moderate) in cycle ergometer. The heart rate data were submitted to analysis of deltas (0-10, 0-30 and 60-240 seconds) and simple linear regression (60-240 seconds). The parameters obtained from simple linear regression analysis were: intercept and slope angle. We used the Shapiro-Wilk test to check the distribution of data and the "t" test for unpaired comparisons between groups. The level of statistical significance was 5%. Results: The value of the intercept and delta 0-10 seconds was lower in middle age in two loads tested and the inclination angle was lower in moderate exercise in middle age. Conclusion: The young subjects present greater magnitude of vagal withdrawal in the initial stage of the HR response during constant load exercise and higher speed of adjustment of sympathetic response in moderate exercise.
Resumo:
The purpose of this study was to determine the physiological, anthropometric, performance, and nutritional characteristics of the Brazil Canoe Polo National Team. Ten male canoe polo athletes (age 26.7 +/- 4.1 years) performed a battery of tests including assessments of anthropometric parameters, upper-body anaerobic power (Wingate), muscular strength, aerobic power, and nutritional profile. In addition, we characterized heart rate and plasma lactate responses and the temporal pattern of the effort/recovery during a simulated canoe polo match. The main results are as follows: body fat, 12.3 +/- 4.0%; upper-body peak and mean power, 6.8 +/- 0.5 and 4.7 +/- 0.4 W . kg(-1), respectively; 1-RM bench press, 99.1 +/- 11.7 kg; peak oxygen uptake, 44.3 +/- 5.8 mL . kg(-1) . min(-1); total energy intake, 42.8 +/- 8.6 kcal . kg(-1); protein, carbohydrate, and fat intakes, 1.9 +/- 0.1, 5.0 +/- 1.5, and 1.7 +/- 0.4 g . kg(-1), respectively; mean heart rate, 146 +/- 11 beats . min(-1); plasma lactate, 5.7 +/- 3.8 mmol . L-1 at half-time and 4.6 +/- 2.2 mmol . L-1 at the end of the match; effort time (relative to total match time), 93.1 +/- 3.0%; number of sprints, 9.6 +/- 4.4. The results of this study will assist coaches, trainers, and nutritionists in developing more adequate training programmes and dietary interventions for canoe polo athletes.
Resumo:
Deep-sea whale falls create sulfidic habits Supporting chemoautotrophic communities, but microbial processes underlying the formation Of Such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measurements, radio-tracer incubations and geochemical analyses. Sediments were Studied at different distances (0 to 9 in) from the whale fall. Highest microbial activities and steepest vertical geochemical gradients were found within 0.5 m of the whale fall, revealing ex situ sulfate reduction and in vitro methanogenesis rates of up to 717 and 99 mmol m(-2) d(-1), respectively. In sediments containing whale biomass, methanogenesis was equivalent to 20 to 30%, of sulfate reduction. During in vitro sediment studies, sulfide and methane were produced within days to weeks after addition of whale biomass, indicating that chemosynthesis is promoted at early stages of the whale fall. Total sulfide production from sediments within 0.5 m of the whale fall was 2.1 +/- 3 and 1.5 +/- 2.1 mol d(-1) in Years 6 and 7, respectively, of which similar to 200 mmol d(-1) were available as free sulfide. Sulfate reduction in bones was much lower, accounting for a total availability of similar to 10 mmol sulfide d(-1). Over periods of at least 7 yr, whale falls can create sulfidic conditions similar to other chemosynthetic habitats Such as cold seeps and hydrothermal vents.
Resumo:
Bertuzzi, R, Bueno, S, Pasqua, LA, Acquesta, FM, Batista, MB, Roschel, H, Kiss, MAPDM, Serrao, JC, Tricoli, V, and Ugrinowitsch, C. Bioenergetics and neuromuscular determinants of the time to exhaustion at velocity corresponding to (V) over dotO(2)max in recreational long-distance runners. J Strength Cond Res 26(8): 2096-2102, 2012-The purpose of this study was to investigate the main bioenergetics and neuromuscular determinants of the time to exhaustion (T-lim) at the velocity corresponding to maximal oxygen uptake in recreational long-distance runners. Twenty runners performed the following tests on 5 different days: (a) maximal incremental treadmill test, (b) 2 submaximal tests to determine running economy and vertical stiffness, (c) exhaustive test to measured the T-lim, (d) maximum dynamic strength test, and (e) muscle power production test. Aerobic and anaerobic energy contributions during the T-lim test were also estimated. The stepwise multiple regression method selected 3 independent variables to explain T-lim variance. Total energy production explained 84.1% of the shared variance (p = 0.001), whereas peak oxygen uptake ((V) over dotO(2)peak) measured during T-lim and lower limb muscle power ability accounted for the additional 10% of the shared variance (p = 0.014). These data suggest that the total energy production, (V) over dotO(2)peak, and lower limb muscle power ability are the main physiological and neuromuscular determinants of T-lim in recreational long-distance runners.
Resumo:
Bertuzzi, R, Franchini, E, Tricoli, V, Lima-Silva, AE, Pires, FDO, Okuno, NM, and Kiss, MAPDM. Fit-climbing test: A field test for indoor rock climbing. J Strength Cond Res 26(6): 1558-1563, 2012-The aim of this study was to develop an indoor rock-climbing test on an artificial wall (Fit-climbing test). Thirteen climbers (elite group [EG] = 6; recreational group [RG] = 7) performed the following tests: (a) familiarization in the Fitclimbing test, (b) the Fit-climbing test, and (c) a retest to evaluate the Fit-climbing test's reliability. Gas exchange, blood lactate concentration, handgrip strength, and heart rate were measured during the test. Oxygen uptake during the Fit-climbing test was not different between groups (EG = 8.4 +/- 1.1 L; RG = 7.9 +/- 1.5 L, p > 0.05). The EG performance (120 +/- 7 movements) was statistically higher than the RG climbers' performance (78 +/- 13 movements) during the Fit-climbing test. Consequently, the oxygen cost per movement during the Fit-climbing test of the EG was significantly lower than that of the RG (p < 0.05). Handgrip strength was higher in the EG when compared with that in the RG in both pre-Fit- and post-Fit-climbing test (p < 0.05). There were no significant differences in any other variables analyzed during the Fit-climbing test (p > 0.05). Furthermore, the performance in the Fit-climbing test presented high reliability (intraclass correlation coefficient = 0.97). Therefore, the performance during the Fit-climbing test may be an alternative to evaluate rock climbers because of its specificity and relation to oxygen cost per movement during climbing.
Resumo:
The aim of the present study was to compare performance and physiological responses during arm and leg aerobic power tests of combat duration in male child, cadet and senior judo athletes. Power output and physiological parameters, i.e., peak oxygen uptake ((V)over dotO(2)peak), peak ventilation, peak heart rate, lactate, and rate of perceived exertion, of 7 child (under 15 years: age class U15, 12.7 +/- 1.1 yrs), 10 cadet (U17, 14.9 +/- 0.7 yrs) and 8 senior (+20, 29.3 +/- 9.2 yrs) male judo athletes were assessed during incremental tests of combat duration on an arm crank and a cycle ergometer. Children as well as cadets demonstrated higher upper body relative VO(2)peak than seniors (37.3 +/- 4.9, 39.2 +/- 5.0 and 31.0 +/- 2.1 ml.kg(-1).min(-1), respectively); moreover, upper and lower body relative VO(2)peak decreased with increasing age (r = -0.575, p < 0.003 and r = -0.580, p < 0.002, respectively). Children showed lower blood lactate concentrations after cranking as well as after cycling when compared to seniors (7.8 +/- 2.4 vs. 11.4 +/- 2.1 mmol.l(-1) and 7.9 +/- 3.0 vs. 12.0 +/- 1.9 mmol.l(-1), respectively); furthermore, blood lactate values after cranking increased with age (r = 0.473, p < 0.017). These differences should be considered in planning the training for judo athletes of different age classes.
Resumo:
Aerobic exercise training (ET) has been established as an important non-pharmacological treatment of hypertension, since it decreases blood pressure. Studies show that the skeletal muscle abnormalities in hypertension are directly associated with capillary rarefaction, higher percentage of fast-twitch fibers (type II) with glycolytic metabolism predominance and increased muscular fatigue. However, little is known about these parameters in hypertension induced by ET. We hypothesized that ET corrects capillary rarefaction, potentially contributing to the restoration of the proportion of muscle fiber types and metabolic proprieties. Twelve-week old Spontaneously Hypertensive Rats (SHR, n=14) and Wistar Kyoto rats (WKY, n=14) were randomly assigned into 4 groups: SHR, trained SHR (SHR-T), WKY and trained WKY (WKY-T). As expected, ten weeks of ET was effective in reducing blood pressure in SHR-T group. In addition, we analyzed the main markers of ET. Resting bradycardia, increase of exercise tolerance, peak oxygen uptake and citrate synthase enzyme activity in trained groups (WKY-T and SHR-T) showed that the aerobic condition was achieved. ET also corrected the skeletal muscle capillary rarefaction in SHR-T. In parallel, we observed reduction in percentage of type IIA and IIX fibers and simultaneous augmented percentage of type I fibers induced by ET in hypertension. These data suggest that ET prevented changes in soleus fiber type composition in SHR, since angiogenesis and oxidative enzyme activity increased are important adaptations of ET, acting in the maintenance of muscle oxidative metabolism and fiber profile.
Resumo:
Objectives: Aerobic exercise training has been established as an important nonpharmacological treatment for hypertension. We investigated whether the number and function of endothelial progenitor cells (EPCs) are restored after exercise training, potentially contributing to neovascularization in hypertension. Methods: Twelve-week-old male spontaneously hypertensive rats (SHRs, n = 14) and Wistar Kyoto (WKY, n = 14) rats were assigned to four groups: SHR; trained SHR (SHR-T); WKY; and trained WKY. Exercise training consisted of 10 weeks of swimming. EPC number and function, as well as the vascular endothelial growth factor (VEGF), nitrotyrosine and nitrite concentration in peripheral blood were quantified by fluorescence-activated cell sorter analysis (CD34+/Flk1+ cells), colony-forming unit assay, ELISA and nitric oxide (NO) analyzer, respectively. Soleus capillary/fiber ratio and protein expression of VEGF and endothelial NO synthase (eNOS) by western blot were assessed. Results: Exercise training was effective in reducing blood pressure in SHR-T accompanied by resting bradycardia, an increase in exercise tolerance, peak oxygen uptake (VO2) and citrate synthase activity. In response to hypertension, the amount of peripheral blood-EPC and number of colonies were decreased in comparison with control levels. In contrast, exercise training normalized the EPC levels and function in SHR-T accompanied by an increase in VEGF and NO levels. In addition, oxidative stress levels were normalized in SHR-T. Similar results were found in the number and function of bone marrow EPC. Exercise training repaired the peripheral capillary rarefaction in hypertension by a signaling pathway VEGF/eNOS-dependent in SHR-T. Moreover, improvement in EPC was significantly related to angiogenesis. Conclusion: Our data show that exercise training repairs the impairment of EPC in hypertension, which could be associated with peripheral revascularization, suggesting a mechanism for its potential therapeutic: application in vascular diseases.
Resumo:
Background: This study assessed the relationship between lower limb hemodynamics and metabolic parameters with walking tolerance in patients with intermittent claudication (IC). Patients and methods: Resting ankle-brachial index (ABI), baseline blood flow (BF), BF response to reactive hyperemia (BFRH), oxygen uptake (VO2), initial claudication distance (ICD) and total walking distance (TWD) were measured in 28 IC patients. Pearson and Spearman correlations were calculated. Results: ABI, baseline BF and BF response to RH did not correlate with ICD or TWD. VO2 at first ventilatory threshold and VO(2)peak were significantly and positively correlated with ICD (r = 0.41 and 0.54, respectively) and TWD (r = 0.65 and 0.71, respectively). Conclusions: VO(2)peak and VO2 at first ventilatory threshold, but not ABI, baseline BF and BFHR were associated with walking tolerance in IC patients. These results suggest that VO2 at first ventilatory threshold may be useful to evaluate walking tolerance and improvements in IC patients.
Resumo:
PURPOSE: To evaluate the effect of inspiratory muscle training (IMT) on cardiac autonomic modulation and on peripheral nerve sympathetic activity in patients with chronic heart failure (CHF). METHODS: Functional capacity, low-frequency (LF) and high-frequency (HF) components of heart rate variability, muscle sympathetic nerve activity inferred by microneurography, and quality of life were determined in 27 patients with CHF who had been sequentially allocated to 1 of 2 groups: (1) control group (with no intervention) and (2) IMT group. Inspiratory muscle training consisted of respiratory exercises, with inspiratory threshold loading of seven 30-minute sessions per week for a period of 12 weeks, with a monthly increase of 30% in maximal inspiratory pressure (PImax) at rest. Multivariate analysis was applied to detect differences between baseline and followup period. RESULTS: Inspiratory muscle training significantly increased PImax (59.2 +/- 4.9 vs 87.5 +/- 6.5 cmH(2)O, P = .001) and peak oxygen uptake (14.4 +/- 0.7 vs 18.9 +/- 0.8 mL.kg(-1).min(-1), P = .002); decreased the peak ventilation (V. E) +/- carbon dioxide production (V-CO2) ratio (35.8 +/- 0.8 vs 32.5 +/- 0.4, P = .001) and the (V) over dotE +/-(V) over dotCO(2) slope (37.3 +/- 1.1 vs 31.3 +/- 1.1, P = .004); increased the HF component (49.3 +/- 4.1 vs 58.4 +/- 4.2 normalized units, P = .004) and decreased the LF component (50.7 +/- 4.1 vs 41.6 +/- 4.2 normalized units, P = .001) of heart rate variability; decreased muscle sympathetic nerve activity (37.1 +/- 3 vs 29.5 +/- 2.3 bursts per minute, P = .001); and improved quality of life. No significant changes were observed in the control group. CONCLUSION: Home-based IMT represents an important strategy to improve cardiac and peripheral autonomic controls, functional capacity, and quality of life in patients with CHF.
Resumo:
Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a nonpharmacological tool for heart failure therapy.
Resumo:
Abstract Background Hypertension can be generated by a great number of mechanisms including elevated uric acid (UA) that contribute to the anion superoxide production. However, physical exercise is recommended to prevent and/or control high blood pressure (BP). The purpose of this study was to investigate the relationship between BP and UA and whether this relationship may be mediated by the functional fitness index. Methods All participants (n = 123) performed the following tests: indirect maximal oxygen uptake (VO2max), AAHPERD Functional Fitness Battery Test to determine the general fitness functional index (GFFI), systolic and diastolic blood pressure (SBP and DBP), body mass index (BMI) and blood sample collection to evaluate the total-cholesterol (CHOL), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), triglycerides (TG), uric acid (UA), nitrite (NO2) and thiobarbituric acid reactive substances (T-BARS). After the physical, hemodynamic and metabolic evaluations, all participants were allocated into three groups according to their GFFI: G1 (regular), G2 (good) and G3 (very good). Results Baseline blood pressure was higher in G1 when compared to G3 (+12% and +11%, for SBP and DBP, respectively, p<0.05) and the subjects who had higher values of BP also presented higher values of UA. Although UA was not different among GFFI groups, it presented a significant correlation with GFFI and VO2max. Also, nitrite concentration was elevated in G3 compared to G1 (140±29 μM vs 111± 29 μM, for G3 and G1, respectively, p<0.0001). As far as the lipid profile, participants in G3 presented better values of CHOL and TG when compared to those in G1. Conclusions Taking together the findings that subjects with higher BP had elevated values of UA and lower values of nitrite, it can be suggested that the relationship between blood pressure and the oxidative stress produced by acid uric may be mediated by training status.
Resumo:
OBJECTIVE: The purpose of this study was to compare aerobic function [anaerobic threshold (%_VVO2-AT), respiratory compensation point (%_VVO2-RCP) and peak oxygen uptake (_VVO2peak)] between physically active patients with HIV/AIDS and matched controls and to examine associations between disease status, poor muscle strength, depression (as estimated by the profile of mood states questionnaire) and the aerobic performance of patients. METHODS: Progressive treadmill test data for %_VVO2-AT (V-slope method), RCP and (_VVO2peak) were compared between 39 male patients with HIV/AIDS (age 40.6¡1.4 years) and 28 male controls (age 44.4¡2.1 years) drawn from the same community and matched for habitual physical activity. Within-patient data were also examined in relation to CD4+ counts (nadir and current data) and peak isokinetic knee torque. RESULTS: AT, RCP and (_VVO2peak) values were generally similar for patients and controls.Within the patient sample, binary classification suggested that AT, RCP and (_VVO2peak) values were not associated with either the nadir or current CD4+ count, but treadmill test variables were positively associated with peak isokinetic knee torque. CONCLUSION: The aerobic performance of physically active patients with HIV/AIDS is generally well conserved. Nevertheless, poor muscle strength is observed in some HIV/AIDS patients, which is associated with lower anaerobic power and (_VVO2peak), suggesting the possibility of enhancing the aerobic performance of patients with weak muscles through appropriate muscle-strengthening activities.
Resumo:
All of the adaptations acquired through physical training are reversible with inactivity. Although significant reductions in maximal oxygen uptake (VO2max) can be observed within 2 to 4 wk of detraining, the consequences of detraining on the physiology of adipose tissue are poorly known. Our aim was therefore to investigate the effects of discontinuing training (physical detraining) on the metabolism and adipocyte cellularity of rat periepididymal (PE) adipose tissue. Male Wistar rats, aged 6 wk, were divided into three groups and studied for 12 wk under the following conditions: 1) trained (T) throughout the period; 2) detrained (D), trained during the first 8 wk and detrained during the remaining 4 wk; and 3) age-matched sedentary (S). Training consisted of treadmill running sessions (1 h/day, 5 days/wk, 50–60%VO2max). The PE adipocyte size analysis revealed significant differences between the groups. The adipocyte cross-sectional area (in µm2) was significantly larger in D than in the T and S groups (3,474 ± 68.8; 1,945.7 ± 45.6; 2,492.4 ± 49.08, respectively, P < 0.05). Compared with T, the isolated adipose cells (of the D rats) showed a 48% increase in the ability to perform lipogenesis (both basal and maximally insulin-stimulated) and isoproterenol-stimulated lipolysis. No changes were observed with respect to unstimulated lipolysis. A 15% reduction in the proportion of apoptotic adipocytes was observed in groups T and D compared with group S. The gene expression levels of adiponectin and PPAR-gamma were upregulated by factors of 3 and 2 in D vs. S, respectively. PREF-1 gene expression was 3-fold higher in T vs. S. From these results, we hypothesize that adipogenesis was stimulated in group D and accompanied by significant adipocyte hypertrophy and an increase in the lipogenic capacity of the adipocytes. The occurrence of apoptotic nuclei in PE fat cells was reduced in the D and T rats; these results raise the possibility that the adipose tissue changes after detraining are obesogenic.
Resumo:
Elevated levels of copper have been detected in various types of human cancer cells, such as breast cancer cells, and a number of mechanisms have been proposed to explain the action and influence of copper on tumor progress. In this work, we found that stimulating the proliferation of mammary epithelial MCF7 cells with the high-redox-potential copper complex Cu (GlyGlyHis) is associated with the copper-induced intracellular generation of reactive oxygen species (ROS) that induces lipid peroxidation and causes increased roughness of external cell membranes, which leads to the formation of larger cell domes. The results presented herein provide new insights into the molecular link between copper and the proliferation of breast cancer cells and, consequently, into the mechanism by which changes in redox balance and ROS accumulation regulates cell membrane roughness. (C) 2012 Elsevier Inc. All rights reserved.