42 resultados para MEVALONATE KINASE-DEFICIENCY
Resumo:
To evaluate the prevalence of genetic defects in clinically suspected autoinflammatory syndromes (AIS) in a Brazilian multicenter study. The study included 102 patients with a clinical diagnosis of Cryopyrin Associated Periodic Syndromes (CAPS), TNF Receptor Associated Periodic Syndrome (TRAPS), Familial Mediterranean Fever (FMF), Mevalonate Kinase Deficiency (MKD) and Pediatric Granulomatous Arthritis (PGA). One of the five AIS-related genes (NLRP3, TNFRSF1A, MEFV, MVK and NOD2) was evaluated in each patient by direct DNA sequencing, based on the most probable clinical suspect. Clinical diagnoses of the 102 patients were: CAPS (n = 28), TRAPS (n = 31), FMF (n = 17), MKD (n = 17) and PGA (n = 9). Of them, 27/102 (26 %) had a confirmed genetic diagnosis: 6/28 (21 %) CAPS patients, 7/31 (23 %) TRAPS, 3/17 (18 %) FMF, 3/17 (18 %) MKD and 8/9 (89 %) PGA. We have found that approximately one third of the Brazilian patients with a clinical suspicion of AIS have a confirmed genetic diagnosis.
Resumo:
Background: Abnormal regulation of glycogen synthase kinase 3-beta (GSK3B) activity has been implicated in the pathophysiology of mood disorders. Many pharmacological agents, including antidepressants, can modulate GSK3B. The aim of the present study was to investigate the effect of short-and long-term sertraline treatment on the expression and phosphorylation of GSK3B in platelets of patients with late-life major depression. Methods: Thirty-nine unmedicated elderly adults with major depressive disorder (MOD) were initially included in this study. The comparison group comprised 18 age-matched, healthy individuals. The expression of total and Ser-9 phosphorylated GSK3B (pGSK3B) was determined by Enzyme Immunometric Assay (EIA) in platelets of patients and controls at baseline, and after 3 and 12 months of sertraline treatments for patients only. During this period, patients were continuously treated with therapeutic doses of sertraline. GSK3B activity was indirectly estimated by calculating the proportion of inactive (phosphorylated) forms (pGSK3B) in relation to the total expression of the enzyme (i.e.. GSK3B ratio). Results: Depressed patients had significantly higher levels of pGSK3B as compared to controls (p < 0.001). Within the MDD group, after 3 months of sertraline treatment no significant changes were observed in GSK3B expression and phosphorylation state, as compared to baseline levels. However, after 12 months of treatment we found a significant increase in the expression of total GSK3B (p = 0.05), in the absence of any significant changes in pGSK3B (p = 0.12), leading to a significant reduction in GSK3B ratio (p = 0.001). Conclusions: Our findings indicate that GSK3B expression was upregulated by the continuous treatment with sertraline, along with an increment in the proportion of active forms of the enzyme. This is compatible with an increase in overall GSK3B activity, which may have been induced by the long-term treatment of late-life depression with sertraline. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome is a complex immunologic disease caused by mutation of the autoimmune regulator (AIRE) gene. Autoimmunity in patients with APECED syndrome has been shown to result from deficiency of AIRE function in transcriptional regulation of thymic peripheral tissue antigens, which leads to defective T-cell negative selection. Candidal susceptibility in patients with APECED syndrome is thought to result from aberrant adaptive immunity. Objective: To determine whether AIRE could function in anticandidal innate immune signaling, we investigated an extrathymic role for AIRE in the immune recognition of beta-glucan through the Dectin-1 pathway, which is required for defense against Candida species. Methods: Innate immune signaling through the Dectin-1 pathway was assessed in both PBMCs from patients with APECED syndrome and a monocytic cell line. Subcellular localization of AIRE was assessed by using confocal microscopy. Results: PBMCs from patients with APECED syndrome had reduced TNF-alpha responses after Dectin-1 ligation but in part used a Raf-1-mediated pathway to preserve function. In the THP-1 human monocytic cell line, reducing AIRE expression resulted in significantly decreased TNF-a release after Dectin-1 ligation. AIRE formed a transient complex with the known Dectin-1 pathway components phosphorylated spleen tyrosine kinase and caspase recruitment domain-containing protein 9 after receptor ligation and localized with Dectin-1 at the cell membrane. Conclusion: AIRE can participate in the Dectin-1 signaling pathway, indicating a novel extrathymic role for AIRE and a defect that likely contributes to fungal susceptibility in patients with APECED syndrome. (J Allergy Clin Immunol 2012;129:464-72.)
Resumo:
The Ca2+-calcineurin pathway affects virulence and morphogenesis in filamentous fungi. Here, we identified 37 CalA-interacting proteins that interact with the catalytic subunit of calcineurin (CalA) in Aspergillus fumigatus, including the nucleoside diphosphate kinase (SwoH). The in vivo interaction between CalA and SwoH was validated by bimolecular fluorescence complementation. A. fumigatus swoH is an essential gene. Therefore, a temperature-sensitive conditional mutant strain with a point mutation in the active site, SwoH(V83F), was constructed, which demonstrated reduced growth and increased sensitivity to elevated temperatures. The SwoH(V83F) mutation did not cause a loss in virulence in the Galleria mellonella infection model. Taken together these results imply that CalA interacts with SwoH. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Aims: To quantify and compare the expression of Langerhans cells (LCs) in the tongue mucosa of AIDS patients with different opportunistic infections, and from acquired immune deficiency syndrome (AIDS) and non-AIDS patients with normal tongues, using autopsy material. Methods and results: Human leucocyte antigen D-related (HLA-DR), CD1a and CD83 antibodies were used to identify and quantify LCs by immunohistochemistry in tongue tissue of 40 AIDS patients (10 with lingual candidiasis, 10 with lingual herpes, 10 with oral hairy leukoplakia and 10 with no lesions) and 23 tongues from human immunodeficiency virus (HIV)negative control patients. Quantification was performed by means of conventional morphometry in four different regions (anterior, middle, posterior and lateral) of the tongue. The results were expressed as positive cells per area of epithelium. The AIDS patients presented a lower density of CD1a(+) cells (P < 0.001), HLA-DR (P < 0.003) and CD83 (P < 0.001) in all regions of the tongue compared to the non-AIDS control group. However, no differences in any of the markers were found when AIDS patients with different opportunistic infections were compared with AIDS patients without tongue infection. Conclusions: Advanced stage AIDS patients showed a depletion of LCs in the tongue mucosa. HIV infection induces cytopathic changes in LCs, contributing to their depletion regardless of the presence of oral infections.
Resumo:
The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)
Resumo:
Castor bean is a nutrient-demanding species, but there is still little information on its micronutrient requirements. The objectives of this study were to evaluate the effects of levels of B (2.5, 12.5 and 25.0 mu mol L-1), Cu (0.05, 0.25 and 0.50 mu mol L-1), Mn (0.2, 1.0 and 2.0 mu mol L-1) and Zn (0.2, 1.0 and 2.0 mu mol L-1) in a nutrient solution on plant B, Cu, Mn and Zn concentrations and uptake, vegetative growth and fruit yield of castor bean "Iris", grown in greenhouse. The experiment was arranged in a completely randomized block design with three replicates. The first deficiency symptoms were observed for B, followed by Zn, Cu and Mn. The main changes in the cell ultrastructure due to lack of B were thickening of the cell walls and middle lamellae, distorted chloroplasts and tightly stacked thylakoids, besides the absence of starch grains. The Mn, Zn and Cu deficiencies led to disruption of chloroplasts, disintegration of thylakoids and absence of amyloplasts. The concentration and uptake of B, Cu, Mn, and Zn in castor bean plants increased with micronutrient supply in the solution. Fruit yield was drastically reduced by B and Mn deficiencies. On the other hand, the dry matter yield of the shoot and root of castor bean plants was not. In the treatment with full nutrient solution, the leaves accumulated 56 and 48 % of the total B and Mn taken up by the plants, respectively, and the seeds and roots 85 and 61 % of the total Cu and Zn taken up, respectively. This shows the high demand of castor bean Iris for B and Mn for fruit yield.
Resumo:
Contents The aim of this study was to determine the effect of temporary inhibition of meiosis using the cyclin-dependent kinase inhibitor butyrolactone I (BLI) on gene expression in bovine oocytes and cumulus cells. Immature bovine cumulusoocyte complexes (COCs) were assigned to groups: (i) Control COCs collected immediately after recovery from the ovary or (ii) after in vitro maturation (IVM) for 24 h, (iii) Inhibited COCs collected 24 h after incubation with 100 mu m BLI or (iv) after meiotic inhibition for 24 h followed by IVM for a further 22 h. For mRNA relative abundance analysis, pools of 10 denuded oocytes and respective cumulus cells were collected. Transcripts related to cell cycle regulation and oocyte competence were evaluated in oocytes and cumulus cells by quantitative real-time PCR (qPCR). Most of the examined transcripts were downregulated (p < 0.05) after IVM in control and inhibited oocytes (19 of 35). Nine transcripts remained stable (p > 0.05) after IVM in control oocytes; only INHBA did not show this pattern in inhibited oocytes. Seven genes were upregulated after IVM in control oocytes (p < 0.05), and only PLAT, RBP1 and INHBB were not upregulated in inhibited oocytes after IVM. In cumulus cells, six genes were upregulated (p < 0.05) after IVM and eight were downregulated (p < 0.05). Cells from inhibited oocytes showed the same pattern of expression regarding maturation profile, but were affected by the temporary meiosis inhibition of the oocyte when the same maturation stages were compared between inhibited and control groups. In conclusion, changes in transcript abundance in oocytes and cumulus cells during maturation in vitro were mostly mirrored after meiotic inhibition followed by maturation.
Resumo:
Background: CAH patients have an increased risk of cardiovascular disease, and it remains unknown if lifelong glucocorticoid (GC) treatment is a contributing factor. In the general population, glucocorticoid receptor gene (NR3C1) polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of CAH patients. Methodology: Sixty-eight adult patients (34SV/34SW) with a mean age of 28.4 +/- 9 years received dexamethasone (mean 0.27 +/- 0.11 mg/day) to obtain normal androgen levels. SW patients also received fludrocortisone (50 mu g/day). Metabolic syndrome (MetS) was defined by the NCEP ATPIII criteria and obesity by BMI >= 30 kg/m(2). NR3C1 alleles were genotyped, and association analyses with phenotype were carried out with Chi-square, t-test and regression analysis. Results: Obesity and MetS were observed in 23.5% and 7.3% of patients, respectively, and were not correlated with GC doses and treatment duration. BMI was positively correlated with blood pressure (BP), triglycerides (TG), LDL-c levels and HOMA-IR and inversely correlated with HDL-c levels. BclI and A3669G variants were found in 26.4% and 9.6% of alleles, respectively. Heterozygotes for the BclI polymorphism presented with higher BMI (29 kg/m(2) +/- 5.3 vs. 26 kg/m(2) +/- 5.3, respectively) and waist circumference (89 cm +/- 12.7 vs. 81 cm +/- 13, respectively) compared to wild-type subjects. Hypertension was found in 12% of patients and heterozygotes for the BclI polymorphism presented higher systolic BP than wild type subjects. Low HDL-c and high TG levels were identified in 30% and 10% of patients, respectively, and were not associated with the NR3C1 polymorphisms. A3669G carriers and non-carriers did not differ. Conclusion: In addition to GC therapy, the BclI GR variant might play an important role in obesity susceptibility in CAH patients. Genotyping of GR polymorphisms could result in the identification of a subgroup at risk patients, allowing for the establishment of personalized treatment and the avoidance of long-term adverse consequences.
Resumo:
Pompe disease is a genetic disorder resulting from a deficiency of lysosomal acid alpha-glucosidase (GAA) that manifests as a clinical spectrum with regard to symptom severity and rate of progression. In this study, we used microarrays to examine gene expression from the muscle of two cohorts of infantile-onset Pompe patients to identify transcriptional differences that may contribute to the disease phenotype. We found strong similarities among the gene expression profiles generated from biceps and quadriceps, and identified a number of signaling pathways altered in both cohorts. We also found that infantile-onset Pompe patient muscle had a gene expression pattern characteristic of immature or regenerating muscle, and exhibited many transcriptional markers of inflammation, despite having few overt signs of inflammatory infiltrate. Further, we identified genes exhibiting correlation between expression at baseline and response to therapy. This combined dataset can serve as a foundation for biological discovery and biomarker development to improve the treatment of Pompe disease. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Cediranib is a potent inhibitor of the VEGF family receptor tyrosine kinases, and a new agent in cancer treatment. The drug has shown promising activity in a variety of solid malignancies, in preclinical models and in clinical trials. Its pharmacokinetics allow for a convenient once-daily administration, with a toxicity profile that is very similar to other VEGF inhibitors. Its main side effects include hypertension, nausea, dysphonia, fatigue and diarrhea. Adverse events seem to be manageable, especially when used in doses lower than 45 mg/day. Studies have shown some activity as a single agent or in combination in advanced tumors, but not enough to secure its approval for routine use up to now. Clinical trials are still evaluating the role of cediranib in combination chemotherapy with cytotoxic agents.
Resumo:
BACKGROUND: Toll-like receptors (TLR) are membrane proteins that recognize conserved molecules derived from bacterial, viral, fungal or host tissues. They are responsible for promoting the production of cytokines and chemokines, increasing the expression of costimulatory molecules and influencing the T Helper response (Th) toward either a Th1 or Th2 profile, thereby modulating the regulatory T cell response and controlling the integrity of the epithelial barrier. The key factors responsible for increased susceptibility to recurrent aphthous ulceration (RAU) are unclear, and because TLRs are involved in both immune regulation and control of the epithelial barrier, a deficiency in TLR activity is likely to cause increased susceptibility. METHODS: We investigated the gene expression of TLRs one through 10 in tissue samples and peripheral blood mononuclear cells (PBMC) of RAU patients in comparison to healthy controls using real-time quantitative reverse transcription PCR. RESULTS: The analysis of mRNA expression levels in oral lesion showed significant (P < 0.01) overexpression of the TLR2(similar to 6-fold) gene and decreased expression of the TLR3 (similar to 5-fold) and TLR5 (similar to 6-fold) genes in comparison with healthy oral mucosa. The analysis of mRNA expression in PBMC indicated a down-regulation of TLR5 gene expression in the cells from RAU patients (P < 0.05; similar to 2-fold). CONCLUSION: Our results support the hypothesis that a subset of RAU patients has fewer TLR expression that have been tentatively implicated in antiinflammatory effects. This derangement of TLR gene expression may cause an overlay exuberant inflammation reaction in situations where normal individuals are resistant. J Oral Pathol Med (2012) 41: 8085
Resumo:
The heart responds to sustained overload by hypertrophic growth in which the myocytes distinctly thicken or elongate on increases in systolic or diastolic stress. Though potentially adaptive, hypertrophy itself may predispose to cardiac dysfunction in pathological settings. The mechanisms underlying the diverse morphology and outcomes of hypertrophy are uncertain. Here we used a focal adhesion kinase (FAK) cardiac-specific transgenic mice model (FAK-Tg) to explore the function of this non-receptor tyrosine kinase on the regulation of myocyte growth. FAK-Tg mice displayed a phenocopy of concentric cardiac hypertrophy, reflecting the relative thickening of the individual myocytes. Moreover, FAK-Tg mice showed structural, functional and molecular features of a compensated hypertrophic growth, and preserved responses to chronic pressure overload. Mechanistically, FAK overexpression resulted in enhanced myocardial FAK activity, which was proven by treatment with a selective FAK inhibitor to be required for the cardiac hypertrophy in this model. Our results indicate that upregulation of FAK does not affect the activity of Src/ERK1/2 pathway, but stimulated signaling by a cascade that encompasses PI3K, AKT, mTOR, S6K and rpS6. Moreover, inhibition of the mTOR complex by rapamycin extinguished the cardiac hypertrophy of the transgenic FAK mice. These findings uncover a unique role for FAK in regulating the signaling mechanisms that governs the selective myocyte growth in width, likely controlling the activity of PI3K/AKT/mTOR pathway, and suggest that FAK activation could be important for the adaptive response to increases in cardiac afterload. This article is part of a Special Issue entitled "Local Signaling in Myocytes". (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Galectin-3 has been implicated in the tumor development via its mediation of the Wnt signaling pathway. Likewise, glycogen synthase kinase-3beta (GSK3 beta) also plays a role in the Wnt signaling pathway by controlling the levels of cytoplasmic beta-catenin. Altered GSK3 beta expression has been described in various tumors, but to date, there are no studies evaluating its expression in models of oral carcinogenesis. Additionally, it is unknown whether the absence of galectin-3 regulates the expression of GSK3 beta. To this end, Gal3-deficient (Gal3(-/-)) and wild-type (Gal3(+/+)) male mice were treated with 4NQO for 16 weeks and sacrificed at week 16 and 32. The tongues were removed, processed, and stained with H&E to detect dysplasias and carcinomas. An immunohistochemical assay was performed to determine the level of P-GSK3 beta-Ser9 expression in both groups. Carcinomas were more prevalent in Gal3(+/+) than Gal3(-/-) mice (55.5% vs. 28.5%), but no statistical difference was reached. In the dysplasias, the proportion of cells positive for P-GSK3 beta-Ser9 was slightly higher in Gal3(+/+) than Gal3(-/-) mice (63% vs. 61%). In the carcinomas, a significant difference between Gal3(+/+) and Gal3(-/-) mice was found (74% vs. 59%; p=0.02). P-GSK3 beta-Ser9-positive cells slightly decreased from the progression of dysplasias to carcinomas in Gal3(-/-) mice (61% vs. 59%; p>0.05). However, a significant increase in P-GSK3 beta-Ser9 expression was observed from dysplasias to carcinomas in Gal3(+/+) mice (63% vs. 74%; p=0.01). In conclusion, these findings suggest that fully malignant transformation of the tongue epithelium is associated with increased P-GSK3 beta-Ser9 expression in Gal3(+/+) mice, but not in Gal3(-/-) mice.
Resumo:
Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.