18 resultados para Integrated production
Resumo:
The integrated production scheduling and lot-sizing problem in a flow shop environment consists of establishing production lot sizes and allocating machines to process them within a planning horizon in a production line with machines arranged in series. The problem considers that demands must be met without backlogging, the capacity of the machines must be respected, and machine setups are sequence-dependent and preserved between periods of the planning horizon. The objective is to determine a production schedule to minimise the setup, production and inventory costs. A mathematical model from the literature is presented, as well as procedures for obtaining feasible solutions. However, some of the procedures have difficulty in obtaining feasible solutions for large-sized problem instances. In addition, we address the problem using different versions of the Asynchronous Team (A-Team) approach. The procedures were compared with literature heuristics based on Mixed Integer Programming. The proposed A-Team procedures outperformed the literature heuristics, especially for large instances. The developed methodologies and the results obtained are presented.
Resumo:
The adoption of no-till system (NTS) combined with crop-livestock integration (CLI) has been a strategy promoted in Brazil, aiming to maximize areas yield and increase agribusiness profitability. This study aimed to evaluate grains yield and phytotechnical attributes from maize and soybean culture by CLI system under NTS after winter annual pure and diversified pastures with the absence or presence of grazing animals. The experiment was installed in Castro (Parana State, Brazil) on in a dystrophic Humic Rhodic Hapludox with a clay texture, using experimental design of randomized complete blocks in 4 x 2 factorial scheme with three replications. Treatments included four pasture combinations (diversified or pure) and animal categories (light and heavy) subjected or not to grazing animals during the winter. During 2008/09 and 2009/10 summers, the area was cultivated with soybeans and maize, respectively, with yield assessment of grains and phytotechnical attributes. Treatments did not alter the yield and weight of a thousand seeds (WTS) of soybeans. In maize culture, the grazing animal during the winter increased the plant population and grains yield, but gave slight decrease in WTS. Pasture combinations (diversified or pure) and animal categories (light and heavy) did not interfere in soybean culture, but benefited the maize crop.
Resumo:
The potential of the red alga Kappaphycus alvarezii to remove nutrients was tested to treat effluents of Trachinotus carolinus fish cultivation, and the production of carrageenan in this condition was analyzed. Experiments were conducted in four tanks of 8000 L with approximately 1200 fishes of 30 g each integrated with three tanks of 100 L with 700 g of K. alvarezii, as initial biomass per tank. Seawater was re-circulated between tanks with seaweed and with fish. As a control, three tanks with seawater circulating in an open system were utilized. Seawater samples were collected daily for 10 days and concentrations of nitrate, nitrite, ammonium and phosphate were determined in the inflow and outflow water of the tanks. Significant differences between both collecting points were considered as nutrient removal by the seaweed. Growth rates and carrageenan yields were also analyzed in seaweed cultivated in seawater and in effluents. Growth rates of seaweed cultivated in tanks were lower than those obtained in open sea and in laboratory cultivation. Effluents had concentrations of nitrate and nitrite ca. 100 times higher than in the control. Maximum values of nutrient removal on effluents were: nitrate= 18.2%; nitrite =50.8%; ammonium =70.5% and phosphate =26.8%. All plants survived throughout the experimental period, but some developed ""ice-ice"", a disease associated with physiological stress. After the experimental period, some plants selected and cultivated in open sea presented higher growth rates in 40 days, indicating nutrient storage. No significant differences between carrageenan yields of K alvarezii cultivated in seawater and in the effluents were observed. Our results show that K. alvarezii can be utilized as a biofilter for fish cultivation effluents, reducing the eutrophication process and can also be processed for carrageenan production, which provides an additional benefit to the fisheries. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This article describes the design, implementation, and experiences with AcMus, an open and integrated software platform for room acoustics research, which comprises tools for measurement, analysis, and simulation of rooms for music listening and production. Through use of affordable hardware, such as laptops, consumer audio interfaces and microphones, the software allows evaluation of relevant acoustical parameters with stable and consistent results, thus providing valuable information in the diagnosis of acoustical problems, as well as the possibility of simulating modifications in the room through analytical models. The system is open-source and based on a flexible and extensible Java plug-in framework, allowing for cross-platform portability, accessibility and experimentation, thus fostering collaboration of users, developers and researchers in the field of room acoustics.
Resumo:
Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (< 40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha(-1) (range 6.6 to 112.4) to 8.0 Mg ha(-1) (-2.5 to 23.0).
Resumo:
The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center-of-mass energy root s = 2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges vertical bar y vertical bar < 0.9 and 2.5 < y <4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L-int(e) = 1.1 nb(-1) and L-int(mu) = 19.9 nb(-1), and the corresponding signal statistics are N-J/psi(e+e-) = 59 +/- 14 and N-J/psi(mu+mu-) = 1364 +/- 53. We present d sigma(J/psi)/dy for the two rapidity regions under study and, for the forward-y range, d(2)sigma(J/psi)/dydp(t) in the transverse momentum domain 0 < p(t) < 8 GeV/c. The results are compared with previously published results at root s = 7 TeV and with theoretical calculations. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
This article describes a real-world production planning and scheduling problem occurring at an integrated pulp and paper mill (P&P) which manufactures paper for cardboard out of produced pulp. During the cooking of wood chips in the digester, two by-products are produced: the pulp itself (virgin fibers) and the waste stream known as black liquor. The former is then mixed with recycled fibers and processed in a paper machine. Here, due to significant sequence-dependent setups in paper type changeovers, sizing and sequencing of lots have to be made simultaneously in order to efficiently use capacity. The latter is converted into electrical energy using a set of evaporators, recovery boilers and counter-pressure turbines. The planning challenge is then to synchronize the material flow as it moves through the pulp and paper mills, and energy plant, maximizing customer demand (as backlogging is allowed), and minimizing operation costs. Due to the intensive capital feature of P&P, the output of the digester must be maximized. As the production bottleneck is not fixed, to tackle this problem we propose a new model that integrates the critical production units associated to the pulp and paper mills, and energy plant for the first time. Simple stochastic mixed integer programming based local search heuristics are developed to obtain good feasible solutions for the problem. The benefits of integrating the three stages are discussed. The proposed approaches are tested on real-world data. Our work may help P&P companies to increase their competitiveness and reactiveness in dealing with demand pattern oscillations. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: Heavy-flavor production in p + p collisions is a good test of perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p + p results, quantified with the nuclear-modification factor (R-AA), provides information on both cold-and hot-nuclear-matter effects. Midrapidity heavy-flavor R-AA measurements at the Relativistic Heavy Ion Collider have challenged parton-energy-loss models and resulted in upper limits on the viscosity-entropy ratio that are near the quantum lower bound. Such measurements have not been made in the forward-rapidity region. Purpose: Determine transverse-momentum (p(T)) spectra and the corresponding R-AA for muons from heavy-flavor meson decay in p + p and Cu + Cu collisions at root s(NN) = 200 GeV and y = 1.65. Method: Results are obtained using the semileptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p(T) spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p + p collisions at root s = 200 GeV, integrated over p(T) and in the rapidity range 1.4 < y < 1.9, is found to be d(sigma e (e) over bar)/dy = 0.139 +/- 0.029 (stat)(-0.058)(+0.051) (syst) mb. This result is consistent with a perturbative fixed-order-plus-next-to-leading-log calculation within scale uncertainties and is also consistent with expectations based on the corresponding midrapidity charm-production cross section measured by PHENIX. The R-AA for heavy-flavor muons in Cu + Cu collisions is measured in three centrality bins for 1 < p(T) < 4 GeV/c. Suppression relative to binary-collision scaling (R-AA < 1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured charm yield in p + p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu + Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.
Resumo:
Liquid biofuels can be produced from a variety of feedstocks and processes. Ethanol and biodiesel production processes based on conventional raw materials are already commercial, but subject to further improvement and optimization. Biofuels production processes using lignocellulosic feedstocks are still in the demonstration phase and require further R&D to increase efficiency. A primary tool to analyze the efficiency of biofuels production processes from an integrated point of view is offered by exergy analysis. To gain further insight into the performance of biofuels production processes, a simulation tool, which allows analyzing the effect of process variables on the exergy efficiency of stages in which chemical or biochemical reactions take place, were implemented. Feedstocks selected for analysis were parts or products of tropical plants such as the fruit and flower stalk of banana tree, palm oil, and glucose syrups. Results of process simulation, taking into account actual process conditions, showed that the exergy efficiencies of the acid hydrolysis of banana fruit and banana pulp were in the same order (between 50% and 60%), lower than the figure for palm oil transesterification (90%), and higher that the exergy efficiency of the enzymatic hydrolysis of flower stalk (20.3%). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO2 efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (delta B-w) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, delta B-w/ANPP and delta B-w/GPP. In contrast, the 28% lower delta B-w in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.
Resumo:
We report STAR measurements of the longitudinal double-spin asymmetry A(LL), the transverse singlespin asymmetry A(N), and the transverse double-spin asymmetries A(Sigma) and A(TT) for inclusive jet production at mid-rapidity in polarized p + p collisions at a center-of-mass energy of root s = 200 GeV. The data represent integrated luminosities of 7.6 pb(-1) with longitudinal polarization and 1.8 pb(-1) with transverse polarization, with 50%-55% beam polarization, and were recorded in 2005 and 2006. No evidence is found for the existence of statistically significant jet A(N), A(Sigma), or A(TT) at mid-rapidity. Recent model calculations indicate the A(N) results may provide new limits on the gluon Sivers distribution in the proton. The asymmetry A(LL) significantly improves the knowledge of gluon polarization in the nucleon.
Resumo:
It is well established that the development of insulin resistance shows a temporal sequence in different organs and tissues. Moreover, considering that the main aspect of insulin resistance in liver is a process of glucose overproduction from gluconeogenesis, we investigated if this metabolic change also shows temporal sequence. For this purpose, a well-established experimental model of insulin resistance induced by high-fat diet (HFD) was used. The mice received HFD (HFD group) or standard diet (COG group) for 1, 7, 14 or 56?days. The HFD group showed increased (P?<?0.05 versus COG) epididymal, retroperitoneal and inguinal fat weight from days 1 to 56. In agreement with these results, the HFD group also showed higher body weight (P?<?0.05 versus COG) from days 7 to 56. Moreover, the changes induced by HFD on liver gluconeogenesis were progressive because the increment (P?<?0.05 versus COG) in glucose production from l-lactate, glycerol, l-alanine and l-glutamine occurred 7, 14, 56 and 56 days after the introduction of the HFD schedule, respectively. Furthermore, glycaemia and cholesterolemia increased (P?<?0.05 versus COG) 14?days after starting the HFD schedule. Taken together, the results suggest that the intensification of liver gluconeogenesis induced by an HFD is not a synchronous all-or-nothing process but is specific for each gluconeogenic substrate and is integrated in a temporal manner with the progressive augmentation of fasting glycaemia. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
In SUSY models with heavy squarks and gaugino mass unification, the gaugino pair production reaction pp -> (W) over tilde (+/-)(1)(Z) over tilde (2) dominates gluino pair production for m (g) over tilde less than or similar to 1 TeV at LHC with root s = 14 TeV (LHC14). For this mass range, the two-body decays (W) over tilde (1) -> W (Z) over tilde (1) and (Z) over tilde (2) -> h (Z) over tilde (1) are expected to dominate the chargino and neutralino branching fractions. By searching for lb (b) over tilde + is not an element of(T) events from (W) over tilde (+/-)(1)Z(2) production, we show that LHC14 with 100 fb(-1) of integrated luminosity becomes sensitive to chargino masses in the range m((W) over tilde1) similar to 450-550 GeV corresponding to m (g) over tilde similar to 1.5-2 TeV in models with gaugino mass unification. For 10(3) fb(-1), LHC14 is sensitive to the Wh channel for m((W) over tilde1) similar to 300-800 GeV, corresponding to m (g) over tilde similar to 1-2.8 TeV, which is comparable to the reach for gluino pair production followed by cascade decays. The Wh + is not an element of(T) search channel opens up a new complementary avenue for SUSY searches at LHC, and serves to point to SUSYas the origin of any new physics discovered via multijet and multilepton + is not an element of(T) channels.
Resumo:
LHC searches for supersymmetry currently focus on strongly produced sparticles, which are copiously produced if gluinos and squarks have masses of a few hundred GeV. However, in supersymmetric models with heavy scalars, as favored by the decoupling solution to the SUSY flavor and CP problems, and m((g) over tilde) greater than or similar to 500 GeV as indicated by recent LHC results, chargino-neutralino ((W) over tilde (+/-)(1)(Z) over tilde (2)) production is the dominant cross section for m((W) over tilde1) similar to m((Z) over tilde2) < m(<(g)over tilde>)/3 at LHC with root s = 7 TeV (LHC7). Furthermore, if m((Z) over tilde1) + (m (Z) over tilde) less than or similar to m((Z) over tilde2) less than or similar to m((Z) over tilde1) + m(h), then (Z) over tilde (2) dominantly decays via (Z) over tilde (2) -> (Z) over tilde (1)Z, while (W) over tilde (1) decays via (W) over tilde (1) -> (Z) over tilde W-1. We investigate the LHC7 reach in the W Z + (sic)T channel (for both leptonic and hadronic decays of the W boson) in models with and without the assumption of gaugino mass universality. In the case of the mSUGRA/CMSSM model with heavy squark masses, the LHC7 discovery reach in the W Z+ (sic)T channel becomes competetive with the reach in the canonical (sic)T + jets channel for integrated luminosities similar to 30 fb(-1). We also present the LHC7 reach for a simplified model with arbitrary m((Z) over tilde1) and m((W) over tilde1) similar to m((Z) over tilde2). Here, we find a reach of up to m((W) over tilde1) similar to 200 (250) GeV for 10 (30) fb(-1).
Resumo:
Several extensions of the standard model predict the existence of new neutral spin-1 resonances associated with the electroweak symmetry breaking sector. Using the data from ATLAS (with integrated luminosity of L = 1.02 fb(-1)) and CMS (with integrated luminosity of L = 1.55 fb(-1)) on the production of W+W- pairs through the process pp --> l(+)l(-)' is not an element of(T), we place model independent bounds on these new vector resonances masses, couplings, and widths. Our analyses show that the present data exclude new neutral vector resonances with masses up to 1-2.3 TeV depending on their couplings and widths. We also demonstrate how to extend our analysis framework to different models with a specific example.