26 resultados para H( )-ATPase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca2+-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)alpha protein structurally linked to AT(2)R as revealed by their co-immunoprecipitation mimicked the effect of Ang-(3-4) on Ca2+-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi((5-24)) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca2+-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace H-3-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca2+-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine hemolymph ion regulation and the kinetic properties of a gill microsomal (Na+, K+)-ATPase from the intertidal hermit crab, Clibanarius vittatus, acclimated to 45 parts per thousand salinity for 10 days. Hemolymph osmolality is hypo-regulated (1102.5 +/- 22.1 mOsm kg(-1) H2O) at 45 parts per thousand but elevated compared to fresh-caught crabs (801.0 +/- 40.1 mOsm kg(-1) H2O). Hemolymph [Na+ (323.0 +/- 2.5 mmol L-1) and [Me2+) (34.6 +/- 1.0 mmol L-1) are hypo-regulated while [Ca2+] (22.5 +/- 0.7 mmol L-1) is hyper-regulated; [K+] is hyper-regulated in fresh-caught crabs (17.4 +/- 0.5 mmol L-1) but hypo-regulated (6.2 +/- 0.7 mmol L-1) at 45 parts per thousand. Protein expression patterns are altered in the 45 parts per thousand-acclimated crabs, although Western blot analyses reveal just a single immunoreactive band, suggesting a single (Na+, K+)-ATPase alpha-subunit isoform, distributed in different density membrane fractions. A high-affinity (Vm = 46.5 +/- 3.5 U mg(-1); K-0.5 = 7.07 +/- 0.01 mu mol L-1) and a low-affinity ATP binding site (Vm = 108.1 +/- 2.5 U mg(-1); K-0.5 = 0.11 +/- 0.3 mmol L-1), both obeying cooperative kinetics, were disclosed. Modulation of (Na+, K+)-ATPase activity by Mg2+, K+ and NH4+ also exhibits site-site interactions, but modulation by Na+ shows Michaelis-Menten kinetics. (Na+, K+)-ATPase activity is synergistically stimulated up to 45% by NH4+ plus K+. Enzyme catalytic efficiency for variable [K+] and fixed [NH4+] is 10-fold greater than for variable [NH4+] and fixed [K+]. Ouabain inhibited approximate to 80% of total ATPase activity (K-I=464.7 +/- 23.2 mu mol L-1), suggesting that ATPases other than (Na+, K+)-ATPase are present. While (Na+, K+)-ATPase activities are similar in fresh-caught (around 142 nmol Pi min(-1) mg(-1)) and 45 parts per thousand-acclimated crabs (around 154 nmol Pi min(-1) mg(-1)), ATP affinity decreases 110-fold and Na+ and K+ affinities increase 2-3-fold in 45 parts per thousand-acclimated crabs. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation discloses the recognition of an FXYD2 protein in a microsomal Na,K-ATPase preparation from the posterior gills of the blue crab, Callinectes danae, by a mammalian (rabbit) FXYD2 peptide specific antibody (gamma C-33) and MALDI-TOF-TOF mass spectrometry techniques. This is the first demonstration of an invertebrate FXYD2 protein. The addition of exogenous pig FXYD2 peptide to the crab gill microsomal fraction stimulated Na,K-ATPase activity in a dose-dependent manner. Exogenous pig FXYD2 also considerably increased enzyme affinity for K+, ATP and N-4(+)center dot K-0.5 for Na+ was unaffected. Exogenous pig FXYD2 increased the V-max for stimulation of gill Na,K-ATPase activity by Na+, K+ and ATP, by 30% to 40%. The crab gill FXYD2 is phosphorylated by PKA, suggesting a regulatory function similar to that known for the mammalian enzyme. The PKA-phosphorylated pig FXYD2 peptide stimulated the crab gill Na,K-ATPase activity by 80%, about 2-fold greater than did the non-phosphorylated peptide. Stimulation by the PKC-phosphorylated pig FXYD2 peptide was minimal. These findings confirm the presence of an FXYD2 peptide in the crab gill Na, K-ATPase and demonstrate that this peptide plays an important role in regulating enzyme activity. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene. Results: Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo. Conclusions: Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of angiotensin II (ANG II) or arginine vasopressin (AVP) alone or plus atrial natriuretic peptide (ANP) on H+-ATPase subcellular vesicle trafficking was investigated in MDCK cells following intracellular pH (pHi) acidification by exposure to20 mMNH4Cl for 2 min in a Na+-free solution containing Schering 28080, conditions under which H+-AT-Pase is the only cell mechanism for pHi recovery. Using the acridine orange fluorescent probe (5mM) and confocal microscopy, the vesicle movement was quantified by determining, for each experimental group, the mean slope of the line indicating the changes in apical/basolateral fluorescence density ratio over time during the first 5.30 min of the pHi recovery period. Under the control conditions, the mean slope was 0.079 ± 0.0033 min-1 (14) and it increased significantly with ANG II [10-12 and 10-7 M, respectively to 0.322 ± 0.038 min-1 (13) and 0.578 ± 0.061 min-1 (12)] or AVP [10-12 and 10-6 M, respectively to 0.301 ± 0.018 min-1 (12) and 0.687 ± 0.049 min-1 (11)]. However, in presence of ANP (10-6 M, decreases cytosolic free calcium), dimethyl-BAPTA/AM (5 × 10-5 M, chelates intracellular calcium) or colchicine (10-5 M, 2-h preincubation; inhibits microtubule-dependent vesicular trafficking) alone or plus ANG II or AVP the mean slopes were similar to the control values, indicating that such agents blocked the stimulatory effect of ANG II or AVP on vesicle trafficking. The results suggest that the pathway responsible for the increase in cytosolic free calcium and the microtu-bule-dependent vesicular trafficking are involved in this hormonal stimulating effect. Whether cytosolic free calcium reduction represents an important direct mechanism for ANP impairs the dose-dependent stimulatory effect of ANG II or AVP on H+-ATPase subcellular vesicle trafficking, or is a side effect of other signaling pathways which will require additional studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO3- concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 +/- 0.02) and severe (6.95 +/- 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 +/- 0.03) and severe (6.86 +/- 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 3,631 expressed sequence tags (ESTs) were established from two size-selected cDNA libraries made from the tetrasporophytic phase of the agarophytic red alga Gracilaria tenuistipitata. The average sizes of the inserts in the two libraries were 1,600 bp and 600 bp, with an average length of the edited sequences of 850 bp. Clustering gave 2,387 assembled sequences with a redundancy of 53%. Of the ESTs, 65% had significant matches to sequences deposited in public databases, 11% to proteins without known function, and 35% were novel. The most represented ESTs were a Na/K-transporting ATPase, a hedgehog-like protein, a glycine dehydrogenase and an actin. Most of the identified genes were involved in primary metabolism and housekeeping. The largest functional group was thus genes involved in metabolism with 14% of the ESTs; other large functional categories included energy, transcription, and protein synthesis and destination. The codon usage was examined using a subset of the data, and the codon bias was found to be limited with all codon combinations used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delayed osseous maturation, expressive-language deficits, and a distinctive facial appearance. Occurrence is generally sporadic, although parent-to-child transmission has been reported on occasion. Employing whole-exome sequencing, we identified heterozygous truncating mutations in SRCAP in five unrelated individuals with sporadic MS. Sanger sequencing identified mutations in SRCAP in eight more affected persons. Mutations were de novo in all six instances in which parental DNA was available. SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome [RTS]). Five SRCAP mutations, two of which are recurrent, were identified; all are tightly clustered within a small (111 codon) region of the final exon. These mutations are predicted to abolish three C-terminal AT-hook DNA-binding motifs while leaving the CBP-binding and ATPase domains intact. Our findings show that SRCAP mutations are the major cause of FHS and offer an explanation for the clinical overlap between FHS and RTS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-kappa B (NF-kappa B) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-kappa B binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-kappa B activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-kappa B, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-alpha (Tnf-alpha), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF alpha B activation and increased NOS and alpha 2/3-Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-kappa B activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-kappa B activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain. (c) 2011 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: Hypomagnesemia may induce hypercholesterolemia, but the contrary has not been described yet. Thus, magnesium homeostasis was evaluated in rats fed a cholesterol-enriched diet for 8 days. This study has a relevant clinical application if hypomagnesemia, due to hypercholesterolemia, is confirmed in patients with long-term hypercholesterolemia. Methods: Both hypercholesterolemic (HC) and normocholesterolemic rats (NC) were divided into sets of experiments to measure hemodynamic parameters, physiological data, maximum capacity to dilute urine (C-H2O), variations (Delta) in [Ca2+](i) and the expression of transporter proteins. Results: HC developed hypomagnesemia and showed high magnesuria in the absence of hemodynamic abnormalities. However, the urinary sodium excretion and C-H2O in HC was similar to NC. On the other hand, the responses to angiotensin II by measuring Delta [Ca2+](i) were higher in the thick ascending limb of Henle's loop (TAL) of HC than NC. Moreover, high expression of the cotransporter NKCC2 was found in renal outer medulla fractions of HC. Taken together, the hypothesis of impairment in TAL was excluded. Actually, the expression of the epithelial Mg2+ channel in renal cortical membrane fractions was reduced in HC. Conclusion: Impairment in distal convoluted tubule induced by hypercholesterolemia explains high magnesuria and hypomagnesemia observed in HC. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hsp70 is an essential molecular chaperone in protein metabolism since it acts as a pivot with other molecular chaperone families. Several co-chaperones act as regulators of the Hsp70 action cycle, as for instance Hip (Hsp70-interacting protein). Hip is a tetratricopeptide repeat protein (TPR) that interacts with the ATPase domain in the Hsp70-ADP state, stabilizing it and preventing substrate dissociation. Molecular chaperones from protozoans, which can cause some neglected diseases, are poorly studied in terms of structure and function. Here, we investigated the structural features of Hip from the protozoa Leishmania braziliensis (LbHip), one of the causative agents of the leishmaniasis disease. LbHip was heterologously expressed and purified in the folded state, as attested by circular dichroism and intrinsic fluorescence emission techniques. LbHip forms an elongated dimer, as observed by analytical gel filtration chromatography, analytical ultracentrifugation and small angle X-ray scattering (SAXS). With the SAXS data a low resolution model was reconstructed, which shed light on the structure of this protein, emphasizing its elongated shape and suggesting its domain organization. We also investigated the chemical-induced unfolding behavior of LbHip and two transitions were observed. The first transition was related to the unfolding of the TPR domain of each protomer and the second transition of the dimer dissociation. Altogether. LbHip presents a similar structure to mammalian Hip, despite their low level of conservation, suggesting that this class of eukaryotic protein may use a similar mechanism of action. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several phylogeographic studies of seabirds have documented low genetic diversity that has been attributed to bottleneck events or individual capacity for dispersal. Few studies have been done in seabirds on the Brazilian coast and all have shown low genetic differentiation on a wide geographic scale. The Kelp Gull is a common species with a wide distribution in the Southern Hemisphere. In this study, we used mitochondrial and nuclear markers to examine the genetic variability of Kelp Gull populations on the Brazilian coast and compared this variability with that of sub-Antarctic island populations of this species. Kelp Gulls showed extremely low genetic variability for nnitochondrial markers (cytb and ATPase) and high diversity for a nuclear locus (intron 7 of the beta-fibrinogen). The intraspecific evolutionary history of Kelp Gulls showed that the variability found in intron 7 of the beta-fibrinogen gene was compatible with the variability expected under neutral evolution but suggested an increase in population size during the last 10,000 years. However, none of the markers revealed evidence of a bottleneck population. These findings indicate that the recent origin of Kelp Gulls is the main explanation for their nuclear diversity, although selective pressure on the mtDNA of this species cannot be discarded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferrao FM, Lara LS, Axelband F, Dias J, Carmona AK, Reis RI, Costa-Neto CM, Vieyra A, Lowe J. Exposure of luminal membranes of LLC-PK1 cells to ANG II induces dimerization of AT(1)/AT(2) receptors to activate SERCA and to promote Ca2+ mobilization. Am J Physiol Renal Physiol 302: F875-F883, 2012. First published January 4, 2012; doi:10.1152/ajprenal.00381.2011.-ANG II is secreted into the lumens of proximal tubules where it is also synthesized, thus increasing the local concentration of the peptide to levels of potential physiological relevance. In the present work, we studied the effect of ANG II via the luminal membranes of LLC-PK1 cells on Ca2+-ATPase of the sarco(endo) plasmic reticulum (SERCA) and plasma membrane (PMCA). ANG II (at concentrations found in the lumen) stimulated rapid (30 s) and persistent (30 min) SERCA activity by more than 100% and increased Ca2+ mobilization. Pretreatment with ANG II for 30 min enhanced the ANG II-induced Ca2+ spark, demonstrating a positively self-sustained stimulus of Ca2+ mobilization by ANG II. ANG II in the medium facing the luminal side of the cells decreased with time with no formation of metabolites, indicating peptide internalization. ANG II increased heterodimerization of AT(1) and AT(2) receptors by 140%, and either losartan or PD123319 completely blocked the stimulation of SERCA by ANG II. Using the PLC inhibitor U73122, PMA, and calphostin C, it was possible to demonstrate the involvement of a PLC -> DAG(PMA)-> PKC pathway in the stimulation of SERCA by ANG II with no effect on PMCA. We conclude that ANG II triggers SERCA activation via the luminal membrane, increasing the Ca2+ stock in the reticulum to ensure a more efficient subsequent mobilization of Ca2+. This first report on the regulation of SERCA activity by ANG II shows a new mechanism for Ca2+ homeostasis in renal cells and also for regulation of Ca2+-modulated fluid reabsorption in proximal tubules.