30 resultados para Gram-negative
Resumo:
Introduction: Despite the growing interest in the study of Gram-negative bacilli (GNB) infections, very little information on osteomyelitis caused by GNB is available in the medical literature. Objectives and methods: To assess clinical and microbiological features of 101 cases of osteomyelitis caused by GNB alone, between January 2007 and January 2009, in a reference center for the treatment of high complexity traumas in the city of Sao Paulo. Results: Most patients were men (63%), with median age of 42 years, affected by chronic osteomyelitis (43%) or acute osteomyelitis associated to open fractures (32%), the majority on the lower limbs (71%). The patients were treated with antibiotics as inpatients for 40 days (median) and for 99 days (median) in outpatient settings. After 6 months follow-up, the clinical remission rate was around 60%, relapse 19%, amputation 7%, and death 5%. Nine percent of cases were lost to follow-up. A total of 121 GNB was isolated from 101 clinical samples. The most frequently isolated pathogens were Enterobacter sp. (25%), Acinetobacter baumannii (21%) e Pseudomonas aeruginosa (20%). Susceptibility to carbapenems was about 100% for Enterobacter sp., 75% for Pseudomonas aeruginosa and 60% for Acinetobacter baumannii. Conclusion: Osteomyelitis caused by GNB remains a serious therapeutic challenge, especially when associated to nonfermenting bacteria. We emphasize the need to consider these agents in diagnosed cases of osteomyelitis, so that an ideal antimicrobial treatment can be administered since the very beginning of the therapy. (C) 2012 Elsevier Editora Ltda. All rights reserved.
Resumo:
Abstract Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. Conclusion The contact time of 180 min of the system with the mixture of H2O2+ peracetic acid, a total theoretical reduction of 6 log10 cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log10).
Resumo:
Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. Structured digital abstract XfDsbC and XfDsbC bind by x ray scattering (View Interaction: 1, 2) XfDsbC and XfDsbC bind by molecular sieving (View interaction) XfDsbC and XfDsbC bind by comigration in non denaturing gel electrophoresis (View interaction) XfDsbC and XfDsbC bind by cross-linking study (View Interaction: 1, 2) XfDsbC and XfDsbC bind by dynamic light scattering (View Interaction: 1, 2)
Resumo:
Novel water-soluble decacationically armed C-60 and C-70 decaiodide monoadducts, C-60- and C-70[>M(C3N6+C3)(2)], were synthesized, characterized, and applied as photosensitizers and potential nano-PDT agents against pathogenic bacteria and cancer cells. A high number of cationic charges per fullerene cage and H-bonding moieties were designed for rapid binding to the anionic residues displayed on the outer parts of bacterial cell walls. In the presence of a high number of electron-donating iodide anions as parts of quaternary ammonium salts in the arm region, we found that C-70[>M(C3N6+C3)(2)] produced more HO center dot than C-60[>M(C3N6+C3)(2)], in addition to O-1(2). This finding offers an explanation of the preferential killing of Gram-positive and Gram-negative bacteria by C-60[>M(C3N6+C3)(2)] and C-70[>M(C3N6+C3)(2)], respectively. The hypothesis is that O-1(2) can diffuse more easily into porous cell walls of Gram-positive bacteria to reach sensitive sites, while the less permeable Gram-negative bacterial cell wall needs the more reactive HO center dot to cause real damage.
Resumo:
Polymyxin B (PMB) is a cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. PMB-induced nephrotoxicity consists of direct toxicity to the renal tubules and the release of reactive oxygen species (ROS) with oxidative damage. This study evaluated the nephroprotective effect of heme oxygenase-1 (HO-1) against PMB-induced nephrotoxicity in rats. Adult male Wistar rats, weighing 286 +/- 12 g, were treated intraperitoneally once a day for 5 days with saline, hemin (HO-1 inducer; 10 mg/kg), zinc protoporphyrin (ZnPP) (HO-1 inhibitor; 50 mu mol/kg, administered before PMB on day 5), PMB (4 mg/kg), PMB plus hemin, and PMB plus ZnPP. Renal function (creatinine clearance, Jaffe method), urinary peroxides (ferrous oxidation of xylenol orange version 2 [FOX-2]), urinary thiobarbituric acid-reactive substances (TBARS), renal tissue thiols, catalase activity, and renal tissue histology were analyzed. The results showed that PMB reduced creatinine clearance (P < 0.05), with an increase in urinary peroxides and TBARS. The PMB toxicity caused a reduction in catalase activity and thiols (P < 0.05). Hemin attenuated PMB nephrotoxicity by increasing the catalase antioxidant activity (P < 0.05). The combination of PMB and ZnPP incremented the fractional interstitial area of renal tissue (P < 0.05), and acute tubular necrosis in the cortex area was also observed. This is the first study demonstrating the protective effect of HO-1 against PMB-induced nephrotoxicity.
Resumo:
Goat breeding in Sardinia constitutes an important source of income for farming and shepherding activities. In this study 170 LAB strains were isolated from Sardinian goat's milk and tested for bacteriocins production against several food-borne pathogenic microorganisms. Four isolates (SD1, SD2, SD3 and SD4) were selected for their effective inhibition on Listeria monocytogenes. The strains were classified as members of Enterococcus genus, according to their biochemical and physiological characteristics, and then genetically identified as Enterococcus faecium. In MRS broth at 37 degrees C, bacteriocins SD1 and SD2 were produced at much higher levels (51200 AU/ml) compared to bacteriocin SD3 (3200 AU/ml) and bacteriocin SD4 (800 AU/ml). Their peptides were inactivated by proteolytic enzymes, but not when treated with alpha-amylase, catalase and lipase. The four bacteriocins remained stable at pH from 2.0 to 12.0, after exposure to 100 degrees C for 120 min and were not affected by the presence of surfactants and salts (N-Laourylsarcosine, NaCl, SDS, Triton X-100, Tween 20, Tween 80 and urea). Their molecular size was determined to be approximately 5 kDa by tricine-SDS-PAGE. Since the strains exhibited a strong antimicrobial activity against 21 L monocytogenes strains and 6 Salmonella spp. isolates, they should be considered as potential bio-preservatives cultures for fermented food productions. Moreover, due to their technological features, the four strains could be taken in account for using as adjunct NSLAB (non-starter lactic acid bacteria) rather than as starter culture. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Xylella fastidiosa is a Gram-negative xylem-limited plant pathogenic bacterium responsible for several economically important crop diseases. Here, we present a novel and efficient protein refolding protocol for the solubilization and purification of recombinant X. fastidiosa peptidoglycan-associated lipoprotein (XfPal). Pal is an outer membrane protein that plays important roles in maintaining the integrity of the cell envelope and in bacterial pathogenicity. Because Pal has a highly hydrophobic N-terminal domain, the heterologous expression studies necessary for structural and functional protein characterization are laborious once the recombinant protein is present in inclusion bodies. Our protocol based on the denaturation of the XfPal-enriched inclusion bodies with 8 M urea followed by buffer-exchange steps via dialysis proved effective for the solubilization and subsequent purification of XfPal, allowing us to obtain a large amount of relatively pure and folded protein. In addition, XfPal was biochemically and functionally characterized. The method for purification reported herein is valuable for further research on the three-dimensional structure and function of Pal and other outer membrane proteins and can contribute to a better understanding of the role of these proteins in bacterial pathogenicity, especially with regard to the plant pathogen X. fastidiosa. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The aim of the present study was to evaluate the behavioral patterns associated with autism and the prevalence of these behaviors in males and females, to verify whether our model of lipopolysaccharide (LPS) administration represents an experimental model of autism. For this, we prenatally exposed Wistar rats to LPS (100 mu g/kg, intraperitoneally, on gestational day 9.5), which mimics infection by gram-negative bacteria. Furthermore, because the exact mechanisms by which autism develops are still unknown, we investigated the neurological mechanisms that might underlie the behavioral alterations that were observed. Because we previously had demonstrated that prenatal LPS decreases striatal dopamine (DA) and metabolite levels, the striatal dopaminergic system (tyrosine hydroxylase [TH] and DA receptors D1a and D2) and glial cells (astrocytes and microglia) were analyzed by using immunohistochemistry, immunoblotting, and real-time PCR. Our results show that prenatal LPS exposure impaired communication (ultrasonic vocalizations) in male pups and learning and memory (T-maze spontaneous alternation) in male adults, as well as inducing repetitive/restricted behavior, but did not change social interactions in either infancy (play behavior) or adulthood in females. Moreover, although the expression of DA receptors was unchanged, the experimental animals exhibited reduced striatal TH levels, indicating that reduced DA synthesis impaired the striatal dopaminergic system. The expression of glial cell markers was not increased, which suggests that prenatal LPS did not induce permanent neuroinflammation in the striatum. Together with our previous finding of social impairments in males, the present findings demonstrate that prenatal LPS induced autism-like effects and also a hypoactivation of the dopaminergic system. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1(T) and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted. Here we present a phylogenomic analysis of the draft genome sequences of BO1(T) and BO2 and of the Australian rodent strains 83-13 and NF2653 that shows that they form two groups well separated from the other sequenced Brucella spp. Several important differences were noted. Both BO1(T) and BO2 did not agglutinate significantly when live or inactivated cells were exposed to monospecific A and Mantisera against O-side chain sugars composed of N-formyl-perosamine. While BO1(T) maintained the genes required to synthesize a typical Brucella O-antigen, BO2 lacked many of these genes but still produced a smooth LPS (lipopolysaccharide). Most missing genes were found in the wbk region involved in O-antigen synthesis in classic smooth Brucella spp. In their place, BO2 carries four genes that other bacteria use for making a rhamnose-based O-antigen. Electrophoretic, immunoblot, and chemical analyses showed that BO2 carries an antigenically different O-antigen made of repeating hexose-rich oligosaccharide units that made the LPS water-soluble, which contrasts with the homopolymeric O-antigen of other smooth brucellae that have a phenol-soluble LPS. The results demonstrate the existence of a group of early-diverging brucellae with traits that depart significantly from those of the Brucella species described thus far. IMPORTANCE This report examines differences between genomes from four new Brucella strains and those from the classic Brucella spp. Our results show that the four new strains are outliers with respect to the previously known Brucella strains and yet are part of the genus, forming two new clades. The analysis revealed important information about the evolution and survival mechanisms of Brucella species, helping reshape our knowledge of this important zoonotic pathogen. One discovery of special importance is that one of the strains, BO2, produces an O-antigen distinct from any that has been seen in any other Brucella isolates to date.
Resumo:
Objective: The presence and survival of microorganisms on toothbrush bristles might play a role on the etiology of oral infections. The aim of this in vitro study was to evaluate the presence of bacterial contamination on new toothbrushes before oral contact. Materials and methods: Forty toothbrushes from five different manufacturers were used in this experimental study. Each manufacturer was divided according to conventional local of obtaining: industry, drugstore, market, and perfumery. The toothbrush heads were completely immersed into tubes containing 5.0 mL of sterile peptonated water (dilution 1:10). A group of eight tubes containing the sterile solution was used as control. After 21 days of anaerobic incubation, occurrence of contamination was visually evaluated and confirmed by light microscopy. Results: Bacterial growth in the medium, indicative of bristles contamination, was found in a total of 19 out of 40 samples (47.5%) evaluated: 6 out of 14 samples (42.85%) from industry group, 4 out of 8 samples (50.0%) from drugstore, 5 out of 10 samples (50.0%) from market, and 4 out of 8 samples (50.0%) from perfumery. Only the toothbrushes with bristles coated with chlorhexidine did not show contamination. The Gram-negative sporulating bacilli were the most prevalent form recovered. Conclusions: Except for chlorhexidine group, bacterial growth was observed in all groups evaluated irrespective local of obtaining. Microsc. Res. Tech., 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Surface proteins have the potential to promote several activities, including adhesion. This work aimed to study the leptospiral coding sequence (CDS) LIC11087, genome annotated as hypothetical outer membrane protein. The LIC11087 gene was cloned and expressed in Escherichia coil BL21 (DE3) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal 6XHis was purified by metal-charged chromatography and characterized by circular dichroism (CD) spectroscopy. The recombinant protein has the ability to mediate attachment to the extracellular matrix (ECM) components, laminin and plasma fibronectin, and was named Lsa30 (Leptospiral surface adhesin of 30 kDa). Lsa30 binds to laminin and to plasma fibronectin in a dose-dependent and saturable manner, with dissociation equilibrium constants (K-D) of 292 +/- 24 nM and 157 +/- 35 nM, respectively. Moreover, the Lsa30 is a plasminogen (PLC) receptor, capable of generating plasmin, in the presence of activator. This protein may interfere with the complement cascade by interacting with C4bp regulator. The Lsa30 is probably a new surface protein of Leptospira as revealed by immunofluorescence assays with living organisms and the reactivity with antibodies present in serum samples of experimentally infected hamsters. Thus, Lsa30 is a novel versatile protein that may play a role in mediating adhesion and may help pathogenic Leptospira to overcome tissue barriers and to escape the immune system. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The fact that there is a complex and bidirectional communication between the immune and nervous systems has been well demonstrated. Lipopolysaccharide (LPS), a component of gram-negative bacteria, is widely used to systematically stimulate the immune system and generate profound physiological and behavioural changes, also known as sickness behaviour (e.g. anhedonia, lethargy, loss of appetite, anxiety, sleepiness). Different ethological tools have been used to analyse the behavioural modifications induced by LPS; however, many researchers analysed only individual tests, a single LPS dose or a unique ethological parameter, thus leading to disagreements regarding the data. In the present study, we investigated the effects of different doses of LPS (10, 50, 200 and 500 mu g/kg, i.p.) in young male Wistar rats (weighing 180200 g; 89 weeks old) on the ethological and spatiotemporal parameters of the elevated plus maze, light-dark box, elevated T maze, open-field tests and emission of ultrasound vocalizations. There was a dose-dependent increase in anxiety-like behaviours caused by LPS, forming an inverted U curve peaked at LPS 200 mu g/kg dose. However, these anxiety-like behaviours were detected only by complementary ethological analysis (stretching, grooming, immobility responses and alarm calls), and these reactions seem to be a very sensitive tool in assessing the first signs of sickness behaviour. In summary, the present work clearly showed that there are resting and alertness reactions induced by opposite neuroimmune mechanisms (neuroimmune bias) that could lead to anxiety behaviours, suggesting that misunderstanding data could occur when only few ethological variables or single doses of LPS are analysed. Finally, it is hypothesized that this bias is an evolutionary tool that increases animals security while the body recovers from a systemic infection.
Resumo:
Interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, and IL-6 have been established as important mediators of fever induced by lipopolysaccharide (LPS) from Gram-negative bacteria. Whether these pro-inflammatory cytokines are also important in mediating fever induced by live bacteria remains less certain. We therefore investigated the following: (1) the synthesis of TNF-alpha, IL-1 beta, and IL-6 during E. coli-induced fever and (2) the effect of blocking the action of cytokines within the brain on E. coli-induced fever. Body or tail skin temperature (bT or Tsk, respectively) was measured by biotelemetry or telethermometry, every 30 min, during 6 or 24 h. Depending on the number of colony-forming units (CFU) injected i.p., administration of E. coli induced a long-lasting increase in bT of male Wistar rats. The duration of fever did not correlate with the number of CFU found in peritoneal cavity or blood. Because 2.5 x 10(8) CFU induced a sustained fever without inducing a state of sepsis/severe infection, this dose was used in subsequent experiments. The E. coli-induced increase in bT was preceded by a decrease in Tsk, reflecting a thermoregulatory response. TNF-alpha, IL-1 beta, and IL-6 were detected at 3 h in serum of animals injected i.p. with E. coli. In the peritoneal exudates, TNF-alpha, IL-1 beta, and IL-6 were detected at 0.5 and 3 h after E. coli administration. Moreover, both IL-1 beta and IL-6, but not TNF-alpha, were found in the cerebrospinal fluid (CSF) and hypothalamus of animals injected with E. coli. Although pre-treatment (i.c.v., 2 mu l, 15 min before) with anti-IL-6 antibody (anti-IL-6, 5 mu g) reduced E. coli-induced fever, pre-treatment with either IL-1 receptor antagonist (IL-1ra, 200 mu g) or soluble TNF receptor I (sTNFRI, 500 ng) had no effect on the fever response. In conclusion, replicating E. coli promotes an integrated thermoregulatory response in which the central action of IL-6, but not IL-1 and TNF, appears to be important.
Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions
Resumo:
Background: Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results: We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (K-D) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a K-D of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions: We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.
Resumo:
The promotion of sugarcane growth by the endophytic Pantoea agglomerans strain 33.1 was studied under gnotobiotic and greenhouse conditions. The green fluorescent protein (GFP)-tagged strain P. agglomerans 33.1: pNKGFP was monitored in vitro in sugarcane plants by microscopy, reisolation, and quantitative PCR (qPCR). Using qPCR and reisolation 4 and 15 days after inoculation, we observed that GFP-tagged strains reached similar density levels both in the rhizosphere and inside the roots and aerial plant tissues. Microscopic analysis was performed at 5, 10, and 18 days after inoculation. Under greenhouse conditions, P. agglomerans 33.1-inoculated sugarcane plants presented more dry mass 30 days after inoculation. Cross-colonization was confirmed by reisolation of the GFP-tagged strain. These data demonstrate that 33.1:pNKGFP is a superior colonizer of sugarcane due to its ability to colonize a number of different plant parts. The growth promotion observed in colonized plants may be related to the ability of P. agglomerans 33.1 to synthesize indoleacetic acid and solubilize phosphate. Additionally, this strain may trigger chitinase and cellulase production by plant roots, suggesting the induction of a plant defense system. However, levels of indigenous bacterial colonization did not vary between inoculated and noninoculated sugarcane plants under greenhouse conditions, suggesting that the presence of P. agglomerans 33.1 has no effect on these communities. In this study, different techniques were used to monitor 33.1:pNKGFP during sugarcane cross-colonization, and our results suggested that this plant growth promoter could be used with other crops. The interaction between sugarcane and P. agglomerans 33.1 has important benefits that promote the plant's growth and fitness.