16 resultados para ELECTRON TRANSFER
Resumo:
In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.
Resumo:
Complexes of the type {[(pyS)Ru(NH3)(4)](2)-mu-L}(n), where pyS = 4-mercaptopyridine, L = 4,4'-dithiodipyridine (pySSpy), pyrazine (pz) and 1,4-dicyanobenzene (DCB), and n = +4 and +5 for fully reduced and mixed-valence complexes, respectively, were synthesized and characterized. Electrochemical data showed that there is electron communication between the metal centers with comproportionation constants of 33.2, 1.30 x 10(8) and 5.56 x 10(5) for L = pySSpy, pz and DCB, respectively. It was also observed that the electronic coupling between the metal centers is affected by the p-back-bonding interaction toward the pyS ligand. Raman spectroscopy showed a dependence of the intensity of the vibrational modes on the exciting radiations giving support to the assignments of the electronic transitions. The degree of electron communication between the metal centers through the bridging ligands suggests that these systems can be molecular wire materials.
Resumo:
Because of its electronic properties, sulfur plays a major role in a variety of metabolic processes and, more in general, in the chemistry of life. In particular, S-S bridges between cysteines are present in the amino acid backbone of proteins. Protein disulfur radical anions may decay following different paths through competing intra and intermolecular routes, including bond cleavage, disproportionation, protein-protein cross linking, and electron transfer. Indeed, mass spectrometry ECD (electron capture dissociation massspectroscopy) studies have shown that capture of low-energy (<0.2 eV) electrons by multiply protonated proteins is followed by dissociation of S-S bonds holding two peptide chains together. In view of the importance of organic sulfur chemistry, we report on electron interactions with disulphide bridges. To study these interactions we used as prototypes the molecules dimethyl sulfide [(CH3)2S] and dimethyl disulfide [(H3C)S2(CH3)]. We seek to better understand the electron-induced cleavage of the disulfide bond. To explore dissociative processes we performed electron scattering calculations with the Schwinger Multichannel Method with pseudopotentials (SMCPP), recently parallelized with OpenMP directives and optimized with subroutines for linear algebra (BLAS) and LAPACK routines. Elastic cross sections obtained for different S-S bond lengths indicate stabilization of the anion formed by electron attachment to a σ*SS antibonding orbital, such that dissociation would be expected.
Resumo:
Tetradifon, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to green bell pepper crops. In this context, in this work, a reliable and sensitive method for determination of tetradifon in Brazilian green bell pepper samples involving a differential pulse voltammetry (DPV) technique on a glassy carbon electrode is proposed. The electrochemical behavior of tetradifon as followed by cyclic voltammetry (CV) suggests that its reduction occurs via an irreversible five-electron transfer vs. Ag vertical bar AgCl, KCl 3 M reference electrode. Very well-resolved diffusion controlled voltammetric peaks have been obtained in a supporting electrolyte solution composed of a mixture of 40% dimethylformamide (DMF), 30% methanol, and 30% NaOH 0.3 mol L-1 at -1.43, -1.57, -1.73, -1.88, and -2.05 V. The proposed DPV method has a good linear response in the 3.00 - 10.0 mu mol L-1 range, with a limit of detection (L.O.D) of 0.756 mu mol L-1 and 0.831 mu mol L-1 in the absence and in the presence of the matrix, respectively. Moreover, improved L.O.D results (0.607 mu mol L-1) have been achieved in the absence of DMF from the supporting electrolyte solution. Recovery has been evaluated in five commercial green bell pepper samples, and recovery percentages ranging from 91.0 to 109 have been obtained for tetradifon determinations. The proposed voltammetric method has also been tested for reproducibility, repeatability, and potential interferents, and the results obtained for these three analytical parameters are satisfactory for electroanalytical purposes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.024207jes] All rights reserved.
Resumo:
Ground state interactions and excited states and transients formed after photolysis and photosensitization of 2-ethylaminodiphenylborinate (2APB) were studied by various techniques. The UV spectrum shows a large absorption band at 235 nm (epsilon = 14,500 M-1 cm(-1)) with a shoulder at 260 nm. The fluorescence spectra show increasing emission intensity with maximum at 300 nm, which shifts to the red up to 10(-3) M concentrations. At higher concentrations, the emission intensity decreases, probably due to the formation of aggregates. UV excitation in deareated solutions shows the formation of two transients at 300 and 360 nm. The latter has a lifetime of 5.7 mu s in ethanol and is totally quenched in the presence of oxygen and assigned to the triplet state of 2APB. The 300 nm peak is not affected by oxygen, has a lifetime in the order of milliseconds, and corresponds to a boron-centered radical species originated from the singlet state. A boron radical can also be obtained by electron transfer from triplet Safranine to the borinate (k(q) = 9.7 x 10(7) M-1 s(-1)) forming the semioxidized form of the dye. EPR experiments using DMPO show that dye-sensitized and direct UV-photolysis of 2ABP renders initially arylboron-centered radicals. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The effect of the room temperature ionic liquid (1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([BMMI][BF4])) on the immobilization of glucose oxidase (GOx) was studied. The electrochemical performance of biosensors prepared following different protocols indicated a beneficial effect of the ionic liquid on the analytical parameters. The chemical interaction between GOx, [BMMI][BF4] and glutaraldehyde was investigated using UV-visible spectroscopy (UV-vis) and circular dichroism (CD). Structural changes of the biomolecule were observed to depend on the method used for the immobilization. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Thimet oligopeptidase (EP24.15) is a cysteine-rich metallopeptidase containing fifteen Cys residues and no intra-protein disulfide bonds. Previous work on this enzyme revealed that the oxidative oligomerization of EP24.15 is triggered by S-glutathiolation at physiological GSSG levels (10-50 mu M) via a mechanism based on thiol-disulfide exchange. In the present work, our aim was to identify EP24.15 Cys residues that are prone to S-glutathiolation and to determine which structural features in the cysteinyl bulk are responsible for the formation of mixed disulfides through the reaction with GSSG and, in this particular case, the Cys residues within EP24.15 that favor either S-glutathiolation or inter-protein thiol-disulfide exchange. These studies were conducted by in silico structural analyses and simulations as well as site-specific mutation. S-glutathiolation was determined by mass spectrometric analyses and western blotting with anti-glutathione antibody. The results indicated that the stabilization of a thiolate sulfhydryl and the solvent accessibility of the cysteines are necessary for S-thiolation. The Solvent Access Surface analysis of the Cys residues prone to glutathione modification showed that the S-glutathiolated Cys residues are located inside pockets where the sulfur atom comes into contact with the solvent and that the positively charged amino acids are directed toward these Cys residues. The simulation of a covalent glutathione docking onto the same Cys residues allowed for perfect glutathione posing. A mutation of the Arg residue 263 that forms a saline bridge to the Cys residue 175 significantly decreased the overall S-glutathiolation and oligomerization of EP24.15. The present results show for the first time the structural requirements for protein S-glutathiolation by GSSG and are consistent with our previous hypothesis that EP24.15 oligomerization is dependent on the electron transfer from specific protonated Cys residues of one molecule to previously S-glutathionylated Cys residues of another one.
Resumo:
Lupulones, hops beta-acids, are one of the main constituents of the hops resin and have an important contribution to the overall bacteriostatic activity of hops during beer brewing. The use of lupulones as natural alternatives to antibiotics is increasing in the food industry and also in bioethanol production. However, lupulones are easy oxidizable and have been shown to be very reactive toward 1-hydroxyethyl radical with apparent bimolecular rate constants close to diffusion control k = 2.9 x 10(8) and 2.6 x 10(8) L mol(-1) s(-1) at 25.0 +/- 0.2 degrees C in ethanol water solution (10% of ethanol (v/v)) as probed by EPR and ESI-IT-MS/MS spin-trapping competitive kinetics, respectively. The free energy change for an electron-transfer mechanism is Delta G degrees = 106 kJ/mol as calculated from the oxidation peak potential experimentally determined for lupulones (1.1 V vs NHE) by cyclic voltammetry and the reported reduction potential for 1-hydroxyethyl radical. The major reaction products identified by LC-ESI-IT-MS/MS and ultrahigh-resolution accurate mass spectrometry (orbitrap FT-MS) are hydroxylated lupulone derivatives and 1-hydroxyethyl radical adducts. The lack of pH dependence for the reaction rate constant, the calculated free energy change for electron transfer, and the main reaction products strongly suggest the prenyl side chains at the hops beta-acids as the reaction centers rather than the beta,beta'-triketone moiety.
Resumo:
We report an efficient alternative to obtain recessed microelectrodes device on gold electrode surface, in which mixed self-assembled monolayer of long and short carbon alkanethiol chains was used for this purpose. Development of the modified electrodes included the chemical adsorption of 11-mercaptoundecanoic acid and 2-mercaptoethanol solution, as well as their mixtures, on gold surface, resulting in the final mixed self-assembled monolayer configuration. For comparison, the electrochemical performance of self-assembled monolayer of 11-mercaptoundecanoic acid. 3-mercaptopropionic acid, 4-mercapto-1-butanol and 6-mercapto-1-hexanol modified electrodes was also investigated. It was verified that, in the mixed self-assembled monolayer, the 11-mercaptoundecanoic acid acts as a barrier for electron transfer while the short alkanethiol chair is deposited in an island-like shape through which electrons can be freely transferred to ions in solution, allowing electrochemical reactions to occur. The performance of the modified electrodes toward microelectrode behavior was investigated via cyclic voltammetry and electrochemical impedance spectroscopy measurements using [Fe(CN)(6)](3-/4-) redox couple as a probe. In this case, sigmoidal voltammetric responses were obtained, very similar to those observed for microelectrodes. Such behavior reinforces the proposition of electron transfer through the short alkanethiol chain layer and surface blockage by the long chain one. Electrochemical impedance results allowed calculated the mean radius value of each microelectrode disks of 3.8 mu m with about 22 mu m interval between them. The microelectrode environment provided by the mixed self-assembled monolayer can be conveniently used to provide an efficient catalytic conversion in biosensing applications. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An antioxidant structure-activity study is carried out in this work with ten flavonoid compounds using quantum chemistry calculations with the functional of density theory method. According to the geometry obtained by using the B3LYP/6-31G(d) method, the HOMO, ionization potential, stabilization energies, and spin density distribution showed that the flavonol is the more antioxidant nucleus. The spin density contribution is determinant for the stability of the free radical. The number of resonance structures is related to the pi-type electron system. 3-hydroxyflavone is the basic antioxidant structure for the simplified flavonoids studied here. The electron abstraction is more favored in the molecules where ether group and 3-hydroxyl are present, nonetheless 2,3-double bond and carbonyl moiety are facultative.
Resumo:
The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field//configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T-2 electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T-1 -> T-3 and T-1 -> T-5 transitions, supporting that the intermediate triplet state (T-2) decays by internal conversion to T-1. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738757]
Resumo:
A general strategy for electrochemically induced assembly of coordination metallopolymers is demonstrated using the tritopic bridging [Ru-3(mu(3)-O)(CH3COO)(6)(pytpy)(3)](+) cluster complex, where pytpy is the 4'-(4-pyridyl)-2,2':6',2 ''-terpyridine ligand, and iron(III) ions. The concept of such an electrochemically induced coordinative assembly was proven exploring the large difference in the [Fe(pytpy)2 complex formation constants depending on the iron ion oxidation state. Much more stable bridging complexes are formed in the presence of Fe(II) in contrast to Fe(III) ions. The build-up of electrochemically active films on FTO electrodes was confirmed by the growth of the corresponding voltammetric peaks concomitantly with the rise of typical triruthenium cluster and [Fe(pytpy)(2)](2+) complex absorption bands. The metallopolymer was constituted by agglomerates of more or less fused tape like structures, exhibiting large voids and pinholes, as revealed by SEM and AFM images. The adhesion/deposition on FTO was improved by functionalizing the surface with TES-tpy and HOOC-tpy, which increased the surface coverage up to 80%, as estimated by impedance spectroscopy. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis and photophysical characterization of a PPV-type copolymer containing a fluorene derivative alternated with thiophene units is presented: poly(9,9'-dioctylfluorene-thiophene) (LAPPS29). Photophysical studies demonstrated that in the solid state only preformed ground state aggregates are responsible for exciton formation. These aggregates are formed with a wide range of size distribution. The emission from isolated segments is quenched either by resonant energy transfer, or by migration processes. Also, the main photovoltaic parameters are discussed in connection with the photophysical behavior.
Resumo:
Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.
Resumo:
This work presents the results from the development of bio-cathodes for the application on paper-based biofuel cells. Our main goal here is to demonstrate the possibility of using different designs of air-breathing bio-cathodes and ink-based bio-cathodes for this new type of paper based electrochemical cell. The electrochemical performance for the bio-electrocatalytic oxygen reduction reaction was studied by using open circuit voltage and amperometry measurements, as well as polarization curves to probe the four-electron reduction reaction of ambient oxygen catalyzed by bilirubin oxidase (BOx). The electrochemical measurements showed that all procedures allowed the direct electron transfer from the active site of the bilirubin oxidase to the electrode surface with a limiting current density of almost 500 mu A cm(-2) for an air-breathing BOx cathode and 150 mu A cm(-2) for an ink based BOx cathode. Under a load of 300 mV a stable current density was obtained for 12 h of continuous operation. (C) 2012 Elsevier Ltd. All rights reserved.