21 resultados para Data Storage Solutions
Resumo:
This paper provides a brief but comprehensive guide to creating, preparing and dissecting a 'virtual' fossil, using a worked example to demonstrate some standard data processing techniques. Computed tomography (CT) is a 3D imaging modality for producing 'virtual' models of an object on a computer. In the last decade, CT technology has greatly improved, allowing bigger and denser objects to be scanned increasingly rapidly. The technique has now reached a stage where systems can facilitate large-scale, non-destructive comparative studies of extinct fossils and their living relatives. Consequently the main limiting factor in CT-based analyses is no longer scanning, but the hurdles of data processing (see disclaimer). The latter comprises the techniques required to convert a 3D CT volume (stack of digital slices) into a virtual image of the fossil that can be prepared (separated) from the matrix and 'dissected' into its anatomical parts. This technique can be applied to specimens or part of specimens embedded in the rock matrix that until now have been otherwise impossible to visualise. This paper presents a suggested workflow explaining the steps required, using as example a fossil tooth of Sphenacanthus hybodoides (Egerton), a shark from the Late Carboniferous of England. The original NHMUK copyrighted CT slice stack can be downloaded for practice of the described techniques, which include segmentation, rendering, movie animation, stereo-anaglyphy, data storage and dissemination. Fragile, rare specimens and type materials in university and museum collections can therefore be virtually processed for a variety of purposes, including virtual loans, website illustrations, publications and digital collections. Micro-CT and other 3D imaging techniques are increasingly utilized to facilitate data sharing among scientists and on education and outreach projects. Hence there is the potential to usher in a new era of global scientific collaboration and public communication using specimens in museum collections.
Resumo:
In this report, we investigate the polarization effect (linear, elliptical and circular) on the two-photon absorption (2PA) properties of a chiral compound based in azoaromatic moieties using the femtosecond Z-scan technique with low repetition rate and low pulse energy. We observed a strong 2PA modulation between 800 nm and 960 nm as a function the polarization changes from linear through elliptical to circular. Such results were interpreted employing the sum-over-essential states approach, which allowed us to model the 2PA circular-linear dichroism effect and to identifier the overlapping of the excited electronic states responsible by the 2PA allowed band. (C) 2012 Optical Society of America
Resumo:
This Article reports a combined experimental and theoretical analysis on the one and two-photon absorption properties of a novel class of organic molecules with a pi-conjugated backbone based on phenylacetylene (JCM874, FD43, and FD48) and azoaromatic (YB3p2S) moieties. Linear optical properties show that the phenylacetylene-based compounds exhibit strong molar absorptivity in the UV and high fluorescence quantum yield with lifetimes of approximately 2.0 ns, while the azoaromatic-compound has a strong absorption in the visible region with very low fluorescence quantum yield. The two-photon absorption was investigated employing nonlinear optical techniques and quantum chemical calculations based on the response functions formalism within the density functional theory framework. The experimental data revealed well-defined 2PA spectra with reasonable cross-section values in the visible and IR. Along the nonlinear spectra we observed two 2PA allowed bands, as well as the resonance enhancement effect due to the presence of one intermediate one-photon allowed state. Quantum chemical calculations revealed that the 2PA allowed bands correspond to transitions to states that are also one-photon allowed, indicating the relaxation of the electric-dipole selection rules. Moreover, using the theoretical results, we were able to interpret the experimental trends of the 2PA spectra. Finally, using a few-energy-level diagram, within the sum-over-essential states approach, we observed strong qualitative and quantitative correlation between experimental and theoretical results.
Resumo:
Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.
Resumo:
Changes in the oceanic heat storage (HS) can reveal important evidences of climate variability related to ocean heat fluxes. Specifically, long-term variations in HS are a powerful indicator of climate change as HS represents the balance between the net surface energy flux and the poleward heat transported by the ocean currents. HS is estimated from sea surface height anomaly measured from the altimeters TOPEX/Poseidon and Jason 1 from 1993 to 2006. To characterize and validate the altimeter-based HS in the Atlantic, we used the data from the Pilot Research Moored Array in the Tropical Atlantic (PIRATA) array. Correlations and rms differences are used as statistical figures of merit to compare the HS estimates. The correlations range from 0.50 to 0.87 in the buoys located at the equator and at the southern part of the array. In that region the rms differences range between 0.40 and 0.51 x 10(9) Jm(-2). These results are encouraging and indicate that the altimeter has the precision necessary to capture the interannual trends in HS in the Atlantic. Albeit relatively small, salinity changes can also have an effect on the sea surface height anomaly. To account for this effect, NCEP/GODAS reanalysis data are used to estimate the haline contraction. To understand which dynamical processes are involved in the HS variability, the total signal is decomposed into nonpropagating basin-scale and seasonal (HS(l)) planetary waves, mesoscale eddies, and small-scale residual components. In general, HS(l) is the dominant signal in the tropical region. Results show a warming trend of HS(l) in the past 13 years almost all over the Atlantic basin with the most prominent slopes found at high latitudes. Positive interannual trends are found in the halosteric component at high latitudes of the South Atlantic and near the Labrador Sea. This could be an indication that the salinity anomaly increased in the upper layers during this period. The dynamics of the South Atlantic subtropical gyre could also be subject to low-frequency changes caused by a trend in the halosteric component on each side of the South Atlantic Current.
Resumo:
The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.
Resumo:
The removal of Pb2+ from aqueous solution by two Brazilian rocks that contain zeolites-amygdaloidal dacite (ZD) and sandstone (ZS)-was examined by batch experiments. ZD contains mordenite and ZS, stilbite. The effects of contact time, concentration of metal in solution and capacity of Na+ to recover the adsorbed metals were evaluated at room temperature (20A degrees C). The sorption equilibrium was reached in the 30 min of agitation time. Both materials removed 100% of Pb2+ from solutions at concentrations up to 50 mg/L, and at concentrations larger than 100 mg/L of Pb2+, the adsorption capacity of sandstone was more efficient than that of amygdaloidal dacite due to the larger quantities and the type of zeolites (stilbite) in the cement of this rock. All adsorbed Pb2+ was easily replaced by Na+ in both samples. The analysis of the adsorption models using nonlinear regression revealed that the Sips and the Freundlich isotherms provided the best fit for the ZS and ZD experimental data, respectively, indicating the heterogeneous adsorption surfaces of these zeolites.
Resumo:
Objectives: To determine the micro-hardness profile of two dual cure resin cements (RelyX - U100 (R), 3M-ESPE and Panavia F 2.0 (R), Kuraray) used for cementing fiber-reinforced resin posts (Fibrekor (R) - Jeneric Pentron) under three different curing protocols and two water storage times. Material and methods: Sixty 16mm long bovine incisor roots were endodontically treated and prepared for cementation of the Fibrekor posts. The cements were mixed as instructed, dispensed in the canal, the posts were seated and the curing performed as follows: a) no light activation; b) light-activation immediately after seating the post, and; c) light-activation delayed 5 minutes after seating the post. The teeth were stored in water and retrieved for analysis after 7 days and 3 months. The roots were longitudinally sectioned and the microhardness was determined at the cervical, middle and apical regions along the cement line. The data was analyzed by the three-way ANOVA test (curing mode, storage time and thirds) for each cement. The Tukey test was used for the post-hoc analysis. Results: Light-activation resulted in a significant increase in the microhardness. This was more evident for the cervical region and for the Panavia cement. Storage in water for 3 months caused a reduction of the micro-hardness for both cements. The U100 cement showed less variation in the micro-hardness regardless of the curing protocol and storage time. Conclusions: The micro-hardness of the cements was affected by the curing and storage variables and were material-dependent.
Resumo:
Background: There is a growing need to improve myocardial protection, which will lead to better performance of cardiac operations and reduce morbidity and mortality. Therefore, the objective of this study was to compare the efficacy of myocardial protection solution using both intracellular and extracellular crystalloid type regarding the performance of the electrical conduction system, left ventricular contractility and edema, after being subjected to ischemic arrest and reperfusion. Methods: Hearts isolated from male Wistar (n=32) rats were prepared using Langendorff method and randomly divided equally into four groups according the cardioprotective solutions used Krebs-Henseleit-Buffer (KHB), Bretschneider-HTK (HTK), St. Thomas-1 (STH-1) and Celsior (CEL). After stabilization with KHB at 37 degrees C, baseline values (control) were collected for heart rate (HR), left ventricle systolic pressure (LVSP), maximum first derivate of rise left ventricular pressure (+dP/dt), maximum first derivate of fall left ventricular pressure (-dP/dt) and coronary flow (CF). The hearts were then perfused at 10 degrees C for 5 min and kept for 2 h in static ischemia at 20 degrees C in each cardioprotective solution. Data evaluation was done using analysis of variance in completely randomized One-Way ANOVA and Tukey's test for multiple comparisons. The level of statistical significance chosen was P<0.05. Results: HR was restored with all the solutions used. The evaluation of left ventricular contractility (LVSP, +dP/dt and -dP/dt) showed that treatment with CEL solution was better compared to other solutions. When analyzing the CF, the HTK solution showed better protection against edema. Conclusion: Despite the cardioprotective crystalloid solutions studied are not fully able to suppress the deleterious effects of ischemia and reperfusion in the rat heart, the CEL solution had significantly higher results followed by HTK>KHB>STH-1.
Resumo:
Objective: The aim of this study was to evaluate the microhardness of radicular dentin after treatment with 980-nm diode laser and different irrigant solutions. Background data: There are few reports of the consequences of diode laser irradiation emitted at 980 nm on the mechanical properties of dentin. Methods: Seventy-two single canal, human canines with complete root formation were randomly distributed among three groups (n = 24), according to the irrigant solution used in the biomechanical preparation: distilled water; 1% NaOCl; and, 1% NaOCl + 17% EDTA. These groups subsequently were divided into three subgroups (n = 8), according to the diode laser parameter: no irradiation (control); 1.5W/100 Hz; and 3.0 W/100 Hz. Laser was applied with helicoidal movements for 20 sec. Roots were sectioned in slices and the fragment corresponding to the middle third was submitted to the microhardness test (KHN) at depths of 30, 90, 150, and 300 mu m. Results: ANOVA and Tukey tests showed that the microhardness of the groups irradiated with 1.5 W/100 Hz (49.7 +/- 11.2) and 3.0W/100 Hz (50.6 +/- 11.9) were statistically similar to each other (p > 0.05) and different (p < 0.05) from the non-irradiated group (45.0 +/- 9.7). Higher microhardness values were obtained at 150 mu m (49.2 +/- 11.0) and 300 mu m (52.3 +/- 11.3) which were similar among themselves and different (p < 0.05) only at the depth of 30 mu m (44.4 +/- 10.5). No differences were found among the irrigant solutions (p > 0.05). Conclusions: The microhardness of the radicular dentin increased after irradiation with 980-nm diode laser.
Resumo:
Spatial data warehouses (SDWs) allow for spatial analysis together with analytical multidimensional queries over huge volumes of data. The challenge is to retrieve data related to ad hoc spatial query windows according to spatial predicates, avoiding the high cost of joining large tables. Therefore, mechanisms to provide efficient query processing over SDWs are essential. In this paper, we propose two efficient indices for SDW: the SB-index and the HSB-index. The proposed indices share the following characteristics. They enable multidimensional queries with spatial predicate for SDW and also support predefined spatial hierarchies. Furthermore, they compute the spatial predicate and transform it into a conventional one, which can be evaluated together with other conventional predicates by accessing a star-join Bitmap index. While the SB-index has a sequential data structure, the HSB-index uses a hierarchical data structure to enable spatial objects clustering and a specialized buffer-pool to decrease the number of disk accesses. The advantages of the SB-index and the HSB-index over the DBMS resources for SDW indexing (i.e. star-join computation and materialized views) were investigated through performance tests, which issued roll-up operations extended with containment and intersection range queries. The performance results showed that improvements ranged from 68% up to 99% over both the star-join computation and the materialized view. Furthermore, the proposed indices proved to be very compact, adding only less than 1% to the storage requirements. Therefore, both the SB-index and the HSB-index are excellent choices for SDW indexing. Choosing between the SB-index and the HSB-index mainly depends on the query selectivity of spatial predicates. While low query selectivity benefits the HSB-index, the SB-index provides better performance for higher query selectivity.
Resumo:
STUDY BY MASS SPECTROMETRY OF SOLUTIONS OF [HYDROXY(TOSYLOXY)IODO]BENZENE: PROPOSED DISPROPORTIONATION MECHANISMS. Solutions of [hydroxy(tosyloxy)iodo]benzene (HTIB or Koser's reagent) in acetonitrile were analyzed using high resolution electrospray ionization mass spectrometry (ESI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) under different conditions. Several species were characterized in these analyses. Based on these data, mechanisms were proposed for the disproportionation of the iodine(III) compounds in iodine(V) and iodine(I) species.
Resumo:
Objectives: This study evaluated the surface microhardness (SM) and roughness (SR) alterations of dental resins submitted to pH catalysed degradation regimens. Methods: Thirty discs of each TPH Spectrum (Dentsply), Z100 (3M-ESPE), or an unfilled experimental bis-GMA/TEGDMA resin were fabricated, totaling 90 specimens. Each specimen was polymerized for 40 s, finished, polished, and individually stored in deionized water at 37 degrees C for 7 days. Specimens were randomly assigned to the following pH solutions: 1.0, 6.9 or 13, and for SM or SR evaluations (n = 5). Baseline Knoop-hardness of each specimen was obtained by the arithmetic mean of five random micro-indentations. For SR, mean baseline values were obtained by five random surface tracings (R-a). Specimens were then soaked in one of the following storage media at 37 degrees C: (1) 0.1 M, pH 1.0 HCl, (2) 0.1 N, pH 13.0 NaOCl, and (3) deionized water (pH 6.9). Solutions were replaced daily. Repeated SM and SR measurements were performed at the 3-, 7- and 14-day storage time intervals. For each test and resin, data were analysed by two-way ANOVA followed by Tukey's test (alpha = 0.05). Results: There was significant decrease in SM and increase in SR values of composites after storage in alkaline medium. TPH and Z100 presented similar behaviour for SM and SR after immersion in the different media, whereas unfilled resin values showed no significant change. Conclusion: Hydrolytic degradation of resin composites seems to begin with the silanized inorganic particles and therefore depend on their composition. Significance: To accelerate composite hydrolysis and produce quick in vitro microstructural damage, alkaline medium appears to be more suitable than acidic medium. Contemporary resin composite properties seem to withstand neutral and acidic oral environments tolerably well. (C) 2012 Elsevier Ltd. All rights reserved.