47 resultados para COLON-CARCINOMA CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antidepressant fluoxetine has been under discussion because of its potential influence on cancer risk. It was found to inhibit the development of carcinogen-induced preneoplastic lesions in colon tissue, but the mechanisms of action are not well understood. Therefore, we investigated anti-proliferative effects, and used HT29 colon tumor cells in vitro, as well as C57BL/6 mice exposed to intra-rectal treatment with the carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) as models. Fluoxetine increased the percentage of HT29 cells in the G(0)/G(1) phase of cell-cycle, and the expression of p27 protein. This was not related to an induction of apoptosis, reactive oxygen species or DNA damage. In vivo, fluoxetine reduced the development of MNNG-induced dysplasia and vascularization-related dysplasia in colon tissue, which was analyzed by histopathological techniques. An anti-proliferative potential of fluoxetine was observed in epithelial and stromal areas. It was accompanied by a reduction of VEGF expression and of the number of cells with angiogenic potential, such as CD133, CD34, and CD31-positive cell clusters. Taken together, our findings suggest that fluoxetine treatment targets steps of early colon carcinogenesis. This confirms its protective potential, explaining at least partially the lower colon cancer risk under antidepressant therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bladder cancer is a common malignancy worldwide. Despite the increased use of cisplatin-based combination therapy, the outcomes for patients with advanced disease remain poor. Recently, altered activation of the PI3K/Akt/mTOR pathway has been associated with reduced patient survival and advanced stage of bladder cancer, making its upstream or downstream components attractive targets for therapeutic intervention. In the present study, we showed that treatment with DTCM-glutaramide, a piperidine that targets PDK1, results in reduced proliferation, diminished cell migration and G1 arrest in 5637 and T24 bladder carcinoma cells. Conversely, no apoptosis, necrosis or autophagy were detected after treatment, suggesting that reduced cell numbers in vitro are a result of diminished proliferation rather than cell death. Furthermore previous exposure to 10 mu g/ml DTCM-glutarimide sensitized both cell lines to ionizing radiation. Although more studies are needed to corroborate our findings, our results indicate that PDK1 may be useful as a therapeutic target to prevent progression and abnormal tissue dissemination of urothelial carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to induce apoptosis is an important marker for cytotoxic antitumor agents. Some natural compounds have been shown to modulate apoptosis pathways that are frequently blocked in human cancers, and therefore, these compounds provide novel opportunities for cancer drug development. Phyllanthus, a plant genus of the family Euphorbiaceae, exhibits multiple pharmacological actions. Of these, Phyllanthus niruri extracts exhibit significant antitumor activity, which is consistent with the traditional medicinal use of this plant. To examine the apoptotic effects of a spray-dried extract of P. niruri (SDEPN), human hepatocellular carcinoma cells (HepG2, Huh-7), colorectal carcinoma cells (Ht29) and keratinocytes (HaCaT) were exposed to the extract for 4, 8 and 24 h. Flow cytometry and caspase-3 immunostaining were used to detect apoptosis, while analysis of variance was applied to identify significant differences between groups (P < 0.05). At all timepoints, the SDEPN induced significantly different cytotoxic effects for HepG2 and Huh-7 cells compared with control cells (P < 0.001). In contrast, the SDEPN had a protective effect on HaCaT cells compared with control cells at all timepoints (P < 0.001). In caspase-3 assays, activation was detected after cell death was induced in Huh-7 and HepG2 cancer cells by the SDEPN. In combination, these results indicate that the SDEPN is selectively toxic towards cancer cell lines, yet is protective towards normal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that BJcuL, a lectin purified from Bothrops jararacussu venom, exerts cytotoxic effects to gastric carcinoma cells MKN45 and AGS. This effect was due to the direct interaction with specific glycans on the cells surface and was observed by cell viability decrease, disorganization of actin filaments and apoptosis. In addition, BJcuL was able to reduce tumor cell adhesion to matrigel, what was inhibited by specific carbohydrate or partially inhibited when cells were pre-incubated with matrigel. Our results suggest that BJcuL was able to promote apoptosis in both tumor cells lines and therefore has a prospect for potential use in cancer therapy. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new diruthenium(II,III) complex, of formula [Ru2Cl(ket)(4)], Ruket, containing the non-steroidal anti-inflammatory drug ketoprofen was synthesized and mainly characterized by electrospray ionization mass spectrometry (ESI-MS), UV-Vis-IR electronic spectroscopy and FTIR and Raman vibrational spectroscopies. The four drug-carboxylato bridging ligands stabilize a Ru-2(II,III) mixed valent core in a paddlewheel type structure as confirmed by ESI mass spectra, electronic and vibrational spectroscopies and magnetic measurements. Ruket and the analogous compounds containing ibuprofen, Ruibp, and naproxen, Runpx, were tested for the biological effects in the human colon carcinoma cells HT-29 and Caco-2 expressing high and low levels of COX-2 respectively. All compounds only weakly affected the proliferation of the colorectal cancer cells HT-29 and Caco-2, and similarly only partially inhibited the production/activity of MMP-2 and MMP-9 by HT-29 cells, suggesting that COX-2 inhibition by these drugs can only partially be involved in the pharmacological effects of these derivatives. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineered nanomaterials have been extensively applied as active materials for technological applications. Since the impact of these nanomaterials on health and environment remains undefined, research on their possible toxic effects has attracted considerable attention. It is known that in humans, for example, the primary site of gold nanoparticles (AuNps) accumulation is the liver. The latter has motivated research regarding the use of AuNps for cancer therapy, since specific organs can be target upon appropriate functionalization of specific nanoparticles. In this study, we investigate the geno and cytotoxicity of two types of AuNps against human hepatocellular carcinoma cells (HepG2) and peripheral blood mononuclear cells (PBMC) from healthy human volunteers. The cells were incubated in the presence of different concentrations of AuNps capped with either sodium citrate or polyamidoamine dendrimers (PAMAM). Our results suggest that both types of AuNps interact with HepG2 cells and PBMC and may exhibit in vitro geno and cytotoxicity even at very low concentrations. In addition, the PBMC were less sensitive to DNA damage toxicity effects than cancer HepG2 cells upon exposure to AuNps. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to investigate the pharmacokinetics of a hematoporphyrin derivative in colonic tumors induced by dimethylhydrazine and adjacent normal colon in Wistar rats using an in vivo fluorescence spectroscopy technique. In conventional clinical application of photodynamic therapy, the interval between photosensitizer (PS) administration and lesion illumination is often standardized without taking into account variations due to the type or localization of the tumor and intrinsic differences in the microcirculation and vascular permeability of each target organ. The analysis of the fluorescence spectra was based on the intensity of porphyrin emission band centered at around 620nm in normal colon and colon tumors. The photosensitizer fluorescence intensity rapidly grew for carcinoma and normal colon, reaching the maximum values 1 and 3 hours after PS injection, respectively. Data presented here allow us to verify that the best compromise between selectivity and drug concentration for colon carcinoma in rats took place in the interval between 1 to 4 h after PS injection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim was to analyze the protein expression of apoptotic genes caspase-3, caspase-8 and bcl-2 with the immunohistochemistry technique, correlating with tumor grade (I, II and III) and with the patient survival in order to understand the basic mechanism of tumoral transformation. The immunohistochemistry reactions on 50 samples of squamous cell carcinoma were carried out with the avidin-biotin immunoperoxidase method and antigen recovery. The analyses were made using the graduation method "in crosses" (0 to 4 crosses - no stain to more than 75% of positives cells) and in categories (low, intermediate, high) of the cytoplasm immunoreactivity of the epidermoid penile carcinoma cells. It was observed a statistically significant difference when the expression of caspase-3 were compared with the grades land II of the tumor (p=0.0010) and when comparing the patient survival with the grades I and II of the tumor (p=0.0212). The protein bcl-2 was more expressed than caspase-3 and caspase-8 proteins, suggesting that the apoptotic rate in this carcinoma is low. The higher expression of the anti-apoptotic protein bcl-2 suggests a higher preservation of the tumoral cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: In many types of cancer, prostaglandin E-2 (PGE(2)) is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE(1), PGE(2) and Ibuprofen (IBP) observed in the T98G human glioma cell line in vitro. Methods: T98G human glioma cells were treated with IBP, PGE(1) or PGE(2) at varying concentrations for 24-72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively). The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results: A significant decrease was seen in cell number (54%) in the presence of 50 mu M IBP. Mitotic index and bromodeoxyuridine (BrdU) incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167%) and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74%) and the transwell migration assay (36%). In contrast, the presence of exogenous PGE(1) or PGE(2) caused significant increases in cell number (37% PGE(1) and 45% PGE(2)). When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE(1) (62%) and to a greater extent by PGE(2) (100%). The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE(1) and 44% PGE(2)) and the transwell migration assay (28% PGE(1) and 68% PGE(2)). Conclusions: The present study demonstrated that treatments which alter PGE(1) and PGE(2) metabolism influence the proliferative and apoptotic indices of T98G glioma cells. The migratory capacity of the cells was also significantly affected by the change in prostaglandin metabolism. Modifying PG metabolism remains an interesting target for future studies in gliomas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Bevacizumab improves the efficacy of oxaliplatin-based chemotherapy in metastatic colorectal cancer. Our aim was to assess the use of bevacizumab in combination with oxaliplatin-based chemotherapy in the adjuvant treatment of patients with resected stage III or high-risk stage II colon carcinoma. Methods: Patients from 330 centres in 34 countries were enrolled into this phase 3, open-label randomised trial. Patients with curatively resected stage III or high-risk stage II colon carcinoma were randomly assigned (1: 1: 1) to receive FOLFOX4 (oxaliplatin 85 mg/m(2), leucovorin 200 mg/m(2), and fluorouracil 400 mg/m(2) bolus plus 600 mg/m(2) 22-h continuous infusion on day 1; leucovorin 200 mg/m(2) plus fluorouracil 400 mg/m(2) bolus plus 600 mg/m(2) 22-h continuous infusion on day 2) every 2 weeks for 12 cycles; bevacizumab 5 mg/kg plus FOLFOX4 (every 2 weeks for 12 cycles) followed by bevacizumab monotherapy 7.5 mg/kg every 3 weeks (eight cycles over 24 weeks); or bevacizumab 7.5 mg/kg plus XELOX (oxaliplatin 130 mg/m(2) on day 1 every 2 weeks plus oral capecitabine 1000 mg/m(2) twice daily on days 1-15) every 3 weeks for eight cycles followed by bevacizumab monotherapy 7.5 mg/kg every 3 weeks (eight cycles over 24 weeks). Block randomisation was done with a central interactive computerised system, stratified by geographic region and disease stage. Surgery with curative intent occurred 4-8 weeks before randomisation. The primary endpoint was disease-free survival, analysed for all randomised patients with stage III disease. This study is registered with ClinicalTrials.gov, number NCT00112918. Findings: Of the total intention-to-treat population (n=3451), 2867 patients had stage III disease, of whom 955 were randomly assigned to receive FOLFOX4, 960 to receive bevacizumab-FOLFOX4, and 952 to receive bevacizumab-XELOX. After a median follow-up of 48 months (range 0-66 months), 237 patients (25%) in the FOLFOX4 group, 280 (29%) in the bevacizumab-FOLFOX4 group, and 253 (27%) in the bevacizumab-XELOX group had relapsed, developed a new colon cancer, or died. The disease-free survival hazard ratio for bevacizumab-FOLFOX4 versus FOLFOX4 was 1.17 (95% CI 0.98-1.39; p=0.07), and for bevacizumab-XELOX versus FOLFOX4 was 1.07 (0.90-1.28; p=0.44). After a minimum follow-up of 60 months, the overall survival hazard ratio for bevacizumab-FOLFOX4 versus FOLFOX4 was 1.27 (1.03-1.57; p=0.02), and for bevacizumab-XELOX versus FOLFOX4 was 1.15 (0.93-1.42; p=0.21). The 573 patients with high-risk stage II cancer were included in the safety analysis. The most common grade 3-5 adverse events were neutropenia (FOLFOX4: 477 [42%] of 1126 patients, bevacizumab-FOLFOX4: 416 [36%] of 1145 patients, and bevacizumab-XELOX: 74 [7%] of 1135 patients), diarrhoea (110 [10%], 135 [12%], and 181 [16%], respectively), and hypertension (12 [1%], 122 [11%], and 116 [10%], respectively). Serious adverse events were more common in the bevacizumab groups (bevacizumab-FOLFOX4: 297 [26%]; bevacizumab-XELOX: 284 [25%]) than in the FOLFOX4 group (226 [20%]). Treatment-related deaths were reported in one patient receiving FOLFOX4, two receiving bevacizumab-FOLFOX4, and five receiving bevacizumab-XELOX. Interpretation: Bevacizumab does not prolong disease-free survival when added to adjuvant chemotherapy in resected stage III colon cancer. Overall survival data suggest a potential detrimental effect with bevacizumab plus oxaliplatin-based adjuvant therapy in these patients. On the basis of these and other data, we do not recommend the use of bevacizumab in the adjuvant treatment of patients with curatively resected stage III colon cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Up-regulation of S100A7 (Psoriasin), a small calcium-binding protein, is associated with the development of several types of carcinomas, but its function and possibility to serve as a diagnostic or prognostic marker have not been fully defined. In order to prepare antibodies to the protein for immunohistochemical studies we produced the recombinant S100A7 protein in E. coli. mRNA extracted from human tracheal tumor tissue which was amplified by RT-PCR to provide the region coding for the S100A7 gene. The amplified fragment was cloned in the vector pCR2.1-TOPO and sub-cloned in the expression vector pAE. The protein rS100A7 (His-tag) was expressed in E. coli BL21::DE3, purified by affinity chromatography on an Ni-NTA column, recovered in the 2.0 to 3.5 mg/mL range in culture medium, and used to produce a rabbit polyclonal antibody anti-rS100A7 protein. The profile of this polyclonal antibody was evaluated in a tissue microarray. Results The rS100A7 (His-tag) protein was homogeneous by SDS-PAGE and mass spectrometry and was used to produce an anti-recombinant S100A7 (His-tag) rabbit serum (polyclonal antibody anti-rS100A7). The molecular weight of rS100A7 (His-tag) protein determined by linear MALDI-TOF-MS was 12,655.91 Da. The theoretical mass calculated for the nonapeptide attached to the amino terminus is 12,653.26 Da (delta 2.65 Da). Immunostaining with the polyclonal anti-rS100A7 protein generated showed reactivity with little or no background staining in head and neck squamous cell carcinoma cells, detecting S100A7 both in nucleus and cytoplasm. Lower levels of S100A7 were detected in non-neoplastic tissue. Conclusions The polyclonal anti-rS100A7 antibody generated here yielded a good signal-to-noise contrast and should be useful for immunohistochemical detection of S100A7 protein. Its potential use for other epithelial lesions besides human larynx squamous cell carcinoma and non-neoplastic larynx should be explored in future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cervical cancer is the third most common cancer in women worldwide. Persistent infection with high-risk HPV types, principally HPV16 and 18 is the main risk factor for the development of this malignancy. However, the onset of invasive tumor occurs many years after initial exposure in a minority of infected women. This suggests that other factors beyond viral infection are necessary for tumor establishment and progression. Tumor progression is characterized by an increase in secretion and activation of matrix metalloproteinases (MMPs) produced by either the tumor cells themselves or tumor-associated fibroblasts or macrophages. Increased MMPs expression, including MMP-2, MMP-9 and MT1-MMP, has been observed during cervical carcinoma progression. These proteins have been associated with degradation of ECM components, tumor invasion, metastasis and recurrence. However, few studies have evaluated the interplay between HPV infection and the expression and activity of MMPs and their regulators in cervical cancer. We analyzed the effect of HPV16 oncoproteins on the expression and activity of MMP-2, MMP-9, MT1-MMP, and their inhibitors TIMP-2 and RECK in cultures of human keratinocytes. We observed that E7 expression is associated with increased pro-MMP-9 activity in the epithelial component of organotypic cultures, while E6 and E7 oncoproteins co-expression down-regulates RECK and TIMP-2 levels in organotypic and monolayers cultures. Finally, a study conducted in human cervical tissues showed a decrease in RECK expression levels in precancer and cancer lesions. Our results indicate that HPV oncoproteins promote MMPs/ RECK-TIMP-2 imbalance which may be involved in HPV-associated lesions outcome.