2 resultados para high optical-to-optical conversion efficiency
em Université de Montréal
Resumo:
Le papier bioactif est obtenu par la modification de substrat du papier avec des biomolécules et des réactifs. Ce type de papier est utilisé dans le développement de nouveaux biocapteurs qui sont portables, jetables et économiques visant à capturer, détecter et dans certains cas, désactiver les agents pathogènes. Généralement les papiers bioactifs sont fabriqués par l’incorporation de biomolécules telles que les enzymes et les anticorps sur la surface du papier. L’immobilisation de ces biomolécules sur les surfaces solides est largement utilisée pour différentes applications de diagnostic comme dans immunocapteurs et immunoessais mais en raison de la nature sensible des enzymes, leur intégration au papier à grande échelle a rencontré plusieurs difficultés surtout dans les conditions industrielles. Pendant ce temps, les microcapsules sont une plate-forme intéressante pour l’immobilisation des enzymes et aussi assez efficace pour permettre à la fonctionnalisation du papier à grande échelle car le papier peut être facilement recouvert avec une couche de telles microcapsules. Dans cette étude, nous avons développé une plate-forme générique utilisant des microcapsules à base d’alginate qui peuvent être appliquées aux procédés usuels de production de papier bioactif et antibactérien avec la capacité de capturer des pathogènes à sa surface et de les désactiver grâce à la production d’un réactif anti-pathogène. La conception de cette plate-forme antibactérienne est basée sur la production constante de peroxyde d’hydrogène en tant qu’agent antibactérien à l’intérieur des microcapsules d’alginate. Cette production de peroxyde d’hydrogène est obtenue par oxydation du glucose catalysée par la glucose oxydase encapsulée à l’intérieur des billes d’alginate. Les différentes étapes de cette étude comprennent le piégeage de la glucose oxydase à l’intérieur des microcapsules d’alginate, l’activation et le renforcement de la surface des microcapsules par ajout d’une couche supplémentaire de chitosan, la vérification de la possibilité d’immobilisation des anticorps (immunoglobulines G humaine comme une modèle d’anticorps) sur la surface des microcapsules et enfin, l’évaluation des propriétés antibactériennes de cette plate-forme vis-à-vis l’Escherichia coli K-12 (E. coli K-12) en tant qu’un représentant des agents pathogènes. Après avoir effectué chaque étape, certaines mesures et observations ont été faites en utilisant diverses méthodes et techniques analytiques telles que la méthode de Bradford pour dosage des protéines, l’électroanalyse d’oxygène, la microscopie optique et confocale à balayage laser (CLSM), la spectrométrie de masse avec désorption laser assistée par matrice- temps de vol (MALDI-TOF-MS), etc. Les essais appropriés ont été effectués pour valider la réussite de modification des microcapsules et pour confirmer à ce fait que la glucose oxydase est toujours active après chaque étape de modification. L’activité enzymatique spécifique de la glucose oxydase après l’encapsulation a été évaluée à 120±30 U/g. Aussi, des efforts ont été faits pour immobiliser la glucose oxydase sur des nanoparticules d’or avec deux tailles différentes de diamètre (10,9 nm et 50 nm) afin d’améliorer l’activité enzymatique et augmenter l’efficacité d’encapsulation. Les résultats obtenus lors de cette étude démontrent les modifications réussies sur les microcapsules d’alginate et aussi une réponse favorable de cette plate-forme antibactérienne concernant la désactivation de E. coli K-12. La concentration efficace de l’activité enzymatique afin de désactivation de cet agent pathogénique modèle a été déterminée à 1.3×10-2 U/ml pour une concentration de 6.7×108 cellules/ml de bactéries. D’autres études sont nécessaires pour évaluer l’efficacité de l’anticorps immobilisé dans la désactivation des agents pathogènes et également intégrer la plate-forme sur le papier et valider l’efficacité du système une fois qu’il est déposé sur papier.
Resumo:
La morphologie des couches actives des cellules solaires organiques joue un rôle important sur l’efficacité de conversion de l’énergie solaire en énergie électrique de ces dispositifs. Les hétérojonctions planaires et les hétérojonctions en volume sont les plus communément utilisées. Cependant, la morphologie idéale pour l’efficacité se situerait à mis chemin entre celles-ci. Il s’agit de l’hétérojonction nanostructurée qui augmenterait la surface entre les couches actives de matériaux tout en favorisant le transport des porteurs de charge. L’objectif de ce projet de maîtrise est d’étudier l’impact de l’implantation de nanostructures dans les cellules solaires organiques sur leurs performances photovoltaïques. Pour ce faire, on utilise la méthode de nanoimpression thermique sur le matériau donneur, le P3HT, afin que celui-ci forme une interface nanostructurée avec le matériau accepteur, le PCBM. Pour effectuer les nanoimpressions, des moules en alumine nanoporeuse ont été fabriqués à l’aide du procédé d’anodisation en deux temps développé par Masuda et al. Ces moules ont subi un traitement afin de faciliter leur séparation du P3HT. Les agents antiadhésifs PDMS et FTDS ont été utilisés à cette fin. Les résultats obtenus témoignent de la complexité d’exécution du procédé de nanoimpression. Il a été démontré que la pression appliquée durant le procédé, la tension superficielle des éléments en contact et les dimensions des nanopores des moules sont des paramètres critiques pour le succès des nanoimpressions. Ceux-ci ont donc dû être optimisés de manière à réussir cette opération. Ainsi, des cellules à interface nanostructurée à 25% avec des nanobâtonnets de 35 nm de hauteur ont pu être fabriquées. Les cellules nanostructurées ont démontré une efficacité 2,3 ± 0,6 fois supérieure aux cellules sans nanostructures, dites planaires. D’autre part, un solvant a été proposé pour diminuer l’interdiffusion entre les couches de P3HT et de PCBM pouvant altérer les nanostructures. Ce phénomène bien connu survient lors du dépot de la couche de PCBM avec le dichlorométhane, un solvant orthogonal avec ces matériaux. Des mesures au TOF-SIMS ont démontré que le limonène permet de diminuer l’interdiffusion entre les couches de P3HT et de PCBM, ce qui en fait un meilleur solvant orthogonal que le dichlorométhane.