3 resultados para gap, minproblem, algoritmi, esatti, lower, bound, posta
em Université de Montréal
Resumo:
Cette thèse est une collection de trois articles en macroéconomie et finances publiques. Elle développe des modèles d'Equilibre Général Dynamique et Stochastique pour analyser les implications macroéconomiques des politiques d'imposition des entreprises en présence de marchés financiers imparfaits. Le premier chapitre analyse les mécanismes de transmission à l'économie, des effets d'un ré-échelonnement de l'impôt sur le profit des entreprises. Dans une économie constituée d'un gouvernement, d'une firme représentative et d'un ménage représentatif, j'élabore un théorème de l'équivalence ricardienne avec l'impôt sur le profit des entreprises. Plus particulièrement, j'établis que si les marchés financiers sont parfaits, un ré-échelonnement de l'impôt sur le profit des entreprises qui ne change pas la valeur présente de l'impôt total auquel l'entreprise est assujettie sur toute sa durée de vie n'a aucun effet réel sur l'économie si l'état utilise un impôt forfaitaire. Ensuite, en présence de marchés financiers imparfaits, je montre qu'une une baisse temporaire de l'impôt forfaitaire sur le profit des entreprises stimule l'investissement parce qu'il réduit temporairement le coût marginal de l'investissement. Enfin, mes résultats indiquent que si l'impôt est proportionnel au profit des entreprises, l'anticipation de taxes élevées dans le futur réduit le rendement espéré de l'investissement et atténue la stimulation de l'investissement engendrée par la réduction d'impôt. Le deuxième chapitre est écrit en collaboration avec Rui Castro. Dans cet article, nous avons quantifié les effets sur les décisions individuelles d'investis-sement et de production des entreprises ainsi que sur les agrégats macroéconomiques, d'une baisse temporaire de l'impôt sur le profit des entreprises en présence de marchés financiers imparfaits. Dans un modèle où les entreprises sont sujettes à des chocs de productivité idiosyncratiques, nous avons d'abord établi que le rationnement de crédit affecte plus les petites (jeunes) entreprises que les grandes entreprises. Pour des entreprises de même taille, les entreprises les plus productives sont celles qui souffrent le plus du manque de liquidité résultant des imperfections du marché financier. Ensuite, nous montré que pour une baisse de 1 dollar du revenu de l'impôt, l'investissement et la production augmentent respectivement de 26 et 3,5 centimes. L'effet cumulatif indique une augmentation de l'investissement et de la production agrégés respectivement de 4,6 et 7,2 centimes. Au niveau individuel, nos résultats indiquent que la politique stimule l'investissement des petites entreprises, initialement en manque de liquidité, alors qu'elle réduit l'investissement des grandes entreprises, initialement non contraintes. Le troisième chapitre est consacré à l'analyse des effets de la réforme de l'imposition des revenus d'entreprise proposée par le Trésor américain en 1992. La proposition de réforme recommande l'élimination des impôts sur les dividendes et les gains en capital et l'imposition d'une seule taxe sur le revenu des entreprises. Pour ce faire, j'ai eu recours à un modèle dynamique stochastique d'équilibre général avec marchés financiers imparfaits dans lequel les entreprises sont sujettes à des chocs idiosyncratiques de productivité. Les résultats indiquent que l'abolition des impôts sur les dividendes et les gains en capital réduisent les distorsions dans les choix d'investissement des entreprises, stimule l'investissement et entraîne une meilleure allocation du capital. Mais pour être financièrement soutenable, la réforme nécessite un relèvement du taux de l'impôt sur le profit des entreprises de 34\% à 42\%. Cette hausse du taux d'imposition décourage l'accumulation du capital. En somme, la réforme engendre une baisse de l'accumulation du capital et de la production respectivement de 8\% et 1\%. Néanmoins, elle améliore l'allocation du capital de 20\%, engendrant des gains de productivité de 1.41\% et une modeste augmentation du bien être des consommateurs.
Resumo:
De nombreux problèmes liés aux domaines du transport, des télécommunications et de la logistique peuvent être modélisés comme des problèmes de conception de réseaux. Le problème classique consiste à transporter un flot (données, personnes, produits, etc.) sur un réseau sous un certain nombre de contraintes dans le but de satisfaire la demande, tout en minimisant les coûts. Dans ce mémoire, on se propose d'étudier le problème de conception de réseaux avec coûts fixes, capacités et un seul produit, qu'on transforme en un problème équivalent à plusieurs produits de façon à améliorer la valeur de la borne inférieure provenant de la relaxation continue du modèle. La méthode que nous présentons pour la résolution de ce problème est une méthode exacte de branch-and-price-and-cut avec une condition d'arrêt, dans laquelle nous exploitons à la fois la méthode de génération de colonnes, la méthode de génération de coupes et l'algorithme de branch-and-bound. Ces méthodes figurent parmi les techniques les plus utilisées en programmation linéaire en nombres entiers. Nous testons notre méthode sur deux groupes d'instances de tailles différentes (gran-des et très grandes), et nous la comparons avec les résultats donnés par CPLEX, un des meilleurs logiciels permettant de résoudre des problèmes d'optimisation mathématique, ainsi qu’avec une méthode de branch-and-cut. Il s'est avéré que notre méthode est prometteuse et peut donner de bons résultats, en particulier pour les instances de très grandes tailles.
Resumo:
L'entraînement sans surveillance efficace et inférence dans les modèles génératifs profonds reste un problème difficile. Une approche assez simple, la machine de Helmholtz, consiste à entraîner du haut vers le bas un modèle génératif dirigé qui sera utilisé plus tard pour l'inférence approximative. Des résultats récents suggèrent que de meilleurs modèles génératifs peuvent être obtenus par de meilleures procédures d'inférence approximatives. Au lieu d'améliorer la procédure d'inférence, nous proposons ici un nouveau modèle, la machine de Helmholtz bidirectionnelle, qui garantit qu'on peut calculer efficacement les distributions de haut-vers-bas et de bas-vers-haut. Nous y parvenons en interprétant à les modèles haut-vers-bas et bas-vers-haut en tant que distributions d'inférence approximative, puis ensuite en définissant la distribution du modèle comme étant la moyenne géométrique de ces deux distributions. Nous dérivons une borne inférieure pour la vraisemblance de ce modèle, et nous démontrons que l'optimisation de cette borne se comporte en régulisateur. Ce régularisateur sera tel que la distance de Bhattacharyya sera minisée entre les distributions approximatives haut-vers-bas et bas-vers-haut. Cette approche produit des résultats de pointe en terme de modèles génératifs qui favorisent les réseaux significativement plus profonds. Elle permet aussi une inférence approximative amérliorée par plusieurs ordres de grandeur. De plus, nous introduisons un modèle génératif profond basé sur les modèles BiHM pour l'entraînement semi-supervisé.