3 resultados para Primary somatosensory cortex
em Université de Montréal
Resumo:
Contexte La connectomique, ou la cartographie des connexions neuronales, est un champ de recherche des neurosciences évoluant rapidement, promettant des avancées majeures en ce qui concerne la compréhension du fonctionnement cérébral. La formation de circuits neuronaux en réponse à des stimuli environnementaux est une propriété émergente du cerveau. Cependant, la connaissance que nous avons de la nature précise de ces réseaux est encore limitée. Au niveau du cortex visuel, qui est l’aire cérébrale la plus étudiée, la manière dont les informations se transmettent de neurone en neurone est une question qui reste encore inexplorée. Cela nous invite à étudier l’émergence des microcircuits en réponse aux stimuli visuels. Autrement dit, comment l’interaction entre un stimulus et une assemblée cellulaire est-elle mise en place et modulée? Méthodes En réponse à la présentation de grilles sinusoïdales en mouvement, des ensembles neuronaux ont été enregistrés dans la couche II/III (aire 17) du cortex visuel primaire de chats anesthésiés, à l’aide de multi-électrodes en tungstène. Des corrélations croisées ont été effectuées entre l’activité de chacun des neurones enregistrés simultanément pour mettre en évidence les liens fonctionnels de quasi-synchronie (fenêtre de ± 5 ms sur les corrélogrammes croisés corrigés). Ces liens fonctionnels dévoilés indiquent des connexions synaptiques putatives entre les neurones. Par la suite, les histogrammes peri-stimulus (PSTH) des neurones ont été comparés afin de mettre en évidence la collaboration synergique temporelle dans les réseaux fonctionnels révélés. Enfin, des spectrogrammes dépendants du taux de décharges entre neurones ou stimulus-dépendants ont été calculés pour observer les oscillations gamma dans les microcircuits émergents. Un indice de corrélation (Rsc) a également été calculé pour les neurones connectés et non connectés. Résultats Les neurones liés fonctionnellement ont une activité accrue durant une période de 50 ms contrairement aux neurones fonctionnellement non connectés. Cela suggère que les connexions entre neurones mènent à une synergie de leur inter-excitabilité. En outre, l’analyse du spectrogramme dépendant du taux de décharge entre neurones révèle que les neurones connectés ont une plus forte activité gamma que les neurones non connectés durant une fenêtre d’opportunité de 50ms. L’activité gamma de basse-fréquence (20-40 Hz) a été associée aux neurones à décharge régulière (RS) et l’activité de haute fréquence (60-80 Hz) aux neurones à décharge rapide (FS). Aussi, les neurones fonctionnellement connectés ont systématiquement un Rsc plus élevé que les neurones non connectés. Finalement, l’analyse des corrélogrammes croisés révèle que dans une assemblée neuronale, le réseau fonctionnel change selon l’orientation de la grille. Nous démontrons ainsi que l’intensité des relations fonctionnelles dépend de l’orientation de la grille sinusoïdale. Cette relation nous a amené à proposer l’hypothèse suivante : outre la sélectivité des neurones aux caractères spécifiques du stimulus, il y a aussi une sélectivité du connectome. En bref, les réseaux fonctionnels «signature » sont activés dans une assemblée qui est strictement associée à l’orientation présentée et plus généralement aux propriétés des stimuli. Conclusion Cette étude souligne le fait que l’assemblée cellulaire, plutôt que le neurone, est l'unité fonctionnelle fondamentale du cerveau. Cela dilue l'importance du travail isolé de chaque neurone, c’est à dire le paradigme classique du taux de décharge qui a été traditionnellement utilisé pour étudier l'encodage des stimuli. Cette étude contribue aussi à faire avancer le débat sur les oscillations gamma, en ce qu'elles surviennent systématiquement entre neurones connectés dans les assemblées, en conséquence d’un ajout de cohérence. Bien que la taille des assemblées enregistrées soit relativement faible, cette étude suggère néanmoins une intrigante spécificité fonctionnelle entre neurones interagissant dans une assemblée en réponse à une stimulation visuelle. Cette étude peut être considérée comme une prémisse à la modélisation informatique à grande échelle de connectomes fonctionnels.
Resumo:
Les informations sensorielles sont traitées dans le cortex par des réseaux de neurones co-activés qui forment des assemblées neuronales fonctionnelles. Le traitement visuel dans le cortex est régit par différents aspects des caractéristiques neuronales tels que l’aspect anatomique, électrophysiologique et moléculaire. Au sein du cortex visuel primaire, les neurones sont sélectifs à divers attributs des stimuli tels que l’orientation, la direction, le mouvement et la fréquence spatiale. Chacun de ces attributs conduit à une activité de décharge maximale pour une population neuronale spécifique. Les neurones du cortex visuel ont cependant la capacité de changer leur sélectivité en réponse à une exposition prolongée d’un stimulus approprié appelée apprentissage visuel ou adaptation visuelle à un stimulus non préférentiel. De ce fait, l’objectif principal de cette thèse est d’investiguer les mécanismes neuronaux qui régissent le traitement visuel durant une plasticité induite par adaptation chez des animaux adultes. Ces mécanismes sont traités sous différents aspects : la connectivité neuronale, la sélectivité neuronale, les propriétés électrophysiologiques des neurones et les effets des drogues (sérotonine et fluoxétine). Le modèle testé se base sur les colonnes d’orientation du cortex visuel primaire. La présente thèse est subdivisée en quatre principaux chapitres. Le premier chapitre (A) traite de la réorganisation du cortex visuel primaire suite à une plasticité induite par adaptation visuelle. Le second chapitre (B) examine la connectivité neuronale fonctionnelle en se basant sur des corrélations croisées entre paires neuronales ainsi que sur des corrélations d’activités de populations neuronales. Le troisième chapitre (C) met en liaison les aspects cités précédemment (les effets de l’adaptation visuelle et la connectivité fonctionnelle) aux propriétés électrophysiologiques des neurones (deux classes de neurones sont traitées : les neurones à décharge régulière et les neurones à décharge rapide ou burst). Enfin, le dernier chapitre (D) a pour objectif l’étude de l’effet du couplage de l’adaptation visuelle à l’administration de certaines drogues, notamment la sérotonine et la fluoxétine (inhibiteur sélectif de recapture de la sérotonine). Méthodes En utilisant des enregistrements extracellulaires d’activités neuronales dans le cortex visuel primaire (V1) combinés à un processus d’imagerie cérébrale optique intrinsèque, nous enregistrons l’activité de décharge de populations neuronales et nous examinons l’activité de neurones individuels extraite des signaux multi-unitaires. L’analyse de l’activité cérébrale se base sur différents algorithmes : la distinction des propriétés électrophysiologiques des neurones se fait par calcul de l’intervalle de temps entre la vallée et le pic maximal du potentiel d’action (largeur du potentiel d’action), la sélectivité des neurones est basée sur leur taux de décharge à différents stimuli, et la connectivité fonctionnelle utilise des calculs de corrélations croisées. L’utilisation des drogues se fait par administration locale sur la surface du cortex (après une craniotomie et une durotomie). Résultats et conclusions Dans le premier chapitre, nous démontrons la capacité des neurones à modifier leur sélectivité après une période d’adaptation visuelle à un stimulus particulier, ces changements aboutissent à une réorganisation des cartes corticales suivant un patron spécifique. Nous attribuons ce résultat à la flexibilité de groupes fonctionnels de neurones qui étaient longtemps considérés comme des unités anatomiques rigides. En effet, nous observons une restructuration extensive des domaines d’orientation dans le but de remodeler les colonnes d’orientation où chaque stimulus est représenté de façon égale. Ceci est d’autant plus confirmé dans le second chapitre où dans ce cas, les cartes de connectivité fonctionnelle sont investiguées. En accord avec les résultats énumérés précédemment, les cartes de connectivité montrent également une restructuration massive mais de façon intéressante, les neurones utilisent une stratégie de sommation afin de stabiliser leurs poids de connectivité totaux. Ces dynamiques de connectivité sont examinées dans le troisième chapitre en relation avec les propriétés électrophysiologiques des neurones. En effet, deux modes de décharge neuronale permettent la distinction entre deux classes neuronales. Leurs dynamiques de corrélations distinctes suggèrent que ces deux classes jouent des rôles clés différents dans l’encodage et l’intégration des stimuli visuels au sein d’une population neuronale. Enfin, dans le dernier chapitre, l’adaptation visuelle est combinée avec l’administration de certaines substances, notamment la sérotonine (neurotransmetteur) et la fluoxétine (inhibiteur sélectif de recapture de la sérotonine). Ces deux substances produisent un effet similaire en facilitant l’acquisition des stimuli imposés par adaptation. Lorsqu’un stimulus non optimal est présenté en présence de l’une des deux substances, nous observons une augmentation du taux de décharge des neurones en présentant ce stimulus. Nous présentons un modèle neuronal basé sur cette recherche afin d’expliquer les fluctuations du taux de décharge neuronale en présence ou en absence des drogues. Cette thèse présente de nouvelles perspectives quant à la compréhension de l’adaptation des neurones du cortex visuel primaire adulte dans le but de changer leur sélectivité dans un environnement d’apprentissage. Nous montrons qu’il y a un parfait équilibre entre leurs habiletés plastiques et leur dynamique d’homéostasie.
Resumo:
Dans cette thèse, nous abordons le contrôle moteur du mouvement du coude à travers deux approches expérimentales : une première étude psychophysique a été effectuée chez les sujets humains, et une seconde implique des enregistrements neurophysiologiques chez le singe. Nous avons recensé plusieurs aspects non résolus jusqu’à présent dans l’apprentissage moteur, particulièrement concernant l’interférence survenant lors de l’adaptation à deux ou plusieurs champs de force anti-corrélés. Nous avons conçu un paradigme où des stimuli de couleur aident les sujets à prédire la nature du champ de force externe actuel avant qu’ils ne l’expérimentent physiquement durant des mouvements d’atteinte. Ces connaissances contextuelles faciliteraient l’adaptation à des champs de forces en diminuant l’interférence. Selon le modèle computationnel de l’apprentissage moteur MOSAIC (MOdular Selection And Identification model for Control), les stimuli de couleur aident les sujets à former « un modèle interne » de chaque champ de forces, à s’en rappeler et à faire la transition entre deux champs de force différents, sans interférence. Dans l’expérience psychophysique, quatre groupes de sujets humains ont exécuté des mouvements de flexion/extension du coude contre deux champs de forces. Chaque force visqueuse était associée à une couleur de l’écran de l’ordinateur et les deux forces étaient anti-corrélées : une force résistante (Vr) a été associée à la couleur rouge de l’écran et l’autre, assistante (Va), à la couleur verte de l’écran. Les deux premiers groupes de sujets étaient des groupes témoins : la couleur de l’écran changeait à chaque bloc de 4 essais, tandis que le champ de force ne changeait pas. Les sujets du groupe témoin Va ne rencontraient que la force assistante Va et les sujets du groupe témoin Vr performaient leurs mouvements uniquement contre une force résistante Vr. Ainsi, dans ces deux groupes témoins, les stimuli de couleur n’étaient pas pertinents pour adapter le mouvement et les sujets ne s’adaptaient qu’à une seule force (Va ou Vr). Dans les deux groupes expérimentaux, cependant, les sujets expérimentaient deux champs de forces différents dans les différents blocs d’essais (4 par bloc), associés à ces couleurs. Dans le premier groupe expérimental (groupe « indice certain », IC), la relation entre le champ de force et le stimulus (couleur de l’écran) était constante. La couleur rouge signalait toujours la force Vr tandis que la force Va était signalée par la couleur verte. L’adaptation aux deux forces anti-corrélées pour le groupe IC s’est avérée significative au cours des 10 jours d’entraînement et leurs mouvements étaient presque aussi bien ajustés que ceux des deux groupes témoins qui n’avaient expérimenté qu’une seule des deux forces. De plus, les sujets du groupe IC ont rapidement démontré des changements adaptatifs prédictifs dans leurs sorties motrices à chaque changement de couleur de l’écran, et ceci même durant leur première journée d’entraînement. Ceci démontre qu’ils pouvaient utiliser les stimuli de couleur afin de se rappeler de la commande motrice adéquate. Dans le deuxième groupe expérimental, la couleur de l’écran changeait régulièrement de vert à rouge à chaque transition de blocs d’essais, mais le changement des champs de forces était randomisé par rapport aux changements de couleur (groupe « indice-incertain », II). Ces sujets ont pris plus de temps à s’adapter aux champs de forces que les 3 autres groupes et ne pouvaient pas utiliser les stimuli de couleurs, qui n’étaient pas fiables puisque non systématiquement reliés aux champs de forces, pour faire des changements prédictifs dans leurs sorties motrices. Toutefois, tous les sujets de ce groupe ont développé une stratégie ingénieuse leur permettant d’émettre une réponse motrice « par défaut » afin de palper ou de sentir le type de la force qu’ils allaient rencontrer dans le premier essai de chaque bloc, à chaque changement de couleur. En effet, ils utilisaient la rétroaction proprioceptive liée à la nature du champ de force afin de prédire la sortie motrice appropriée pour les essais qui suivent, jusqu’au prochain changement de couleur d’écran qui signifiait la possibilité de changement de force. Cette stratégie était efficace puisque la force demeurait la même dans chaque bloc, pendant lequel la couleur de l’écran restait inchangée. Cette étude a démontré que les sujets du groupe II étaient capables d’utiliser les stimuli de couleur pour extraire des informations implicites et explicites nécessaires à la réalisation des mouvements, et qu’ils pouvaient utiliser ces informations pour diminuer l’interférence lors de l’adaptation aux forces anti-corrélées. Les résultats de cette première étude nous ont encouragés à étudier les mécanismes permettant aux sujets de se rappeler d’habiletés motrices multiples jumelées à des stimuli contextuels de couleur. Dans le cadre de notre deuxième étude, nos expériences ont été effectuées au niveau neuronal chez le singe. Notre but était alors d’élucider à quel point les neurones du cortex moteur primaire (M1) peuvent contribuer à la compensation d’un large éventail de différentes forces externes durant un mouvement de flexion/extension du coude. Par cette étude, nous avons testé l’hypothèse liée au modèle MOSAIC, selon laquelle il existe plusieurs modules contrôleurs dans le cervelet qui peuvent prédire chaque contexte et produire un signal de sortie motrice approprié pour un nombre restreint de conditions. Selon ce modèle, les neurones de M1 recevraient des entrées de la part de plusieurs contrôleurs cérébelleux spécialisés et montreraient ensuite une modulation appropriée de la réponse pour une large variété de conditions. Nous avons entraîné deux singes à adapter leurs mouvements de flexion/extension du coude dans le cadre de 5 champs de force différents : un champ nul ne présentant aucune perturbation, deux forces visqueuses anti-corrélées (assistante et résistante) qui dépendaient de la vitesse du mouvement et qui ressemblaient à celles utilisées dans notre étude psychophysique chez l’homme, une force élastique résistante qui dépendait de la position de l’articulation du coude et, finalement, un champ viscoélastique comportant une sommation linéaire de la force élastique et de la force visqueuse. Chaque champ de force était couplé à une couleur d’écran de l’ordinateur, donc nous avions un total de 5 couleurs différentes associées chacune à un champ de force (relation fixe). Les singes étaient bien adaptés aux 5 conditions de champs de forces et utilisaient les stimuli contextuels de couleur pour se rappeler de la sortie motrice appropriée au contexte de forces associé à chaque couleur, prédisant ainsi leur sortie motrice avant de sentir les effets du champ de force. Les enregistrements d’EMG ont permis d’éliminer la possibilité de co-contractions sous-tendant ces adaptations, étant donné que le patron des EMG était approprié pour compenser chaque condition de champ de force. En parallèle, les neurones de M1 ont montré des changements systématiques dans leurs activités, sur le plan unitaire et populationnel, dans chaque condition de champ de force, signalant les changements requis dans la direction, l’amplitude et le décours temporel de la sortie de force musculaire nécessaire pour compenser les 5 conditions de champs de force. Les changements dans le patron de réponse pour chaque champ de force étaient assez cohérents entre les divers neurones de M1, ce qui suggère que la plupart des neurones de M1 contribuent à la compensation de toutes les conditions de champs de force, conformément aux prédictions du modèle MOSAIC. Aussi, cette modulation de l’activité neuronale ne supporte pas l’hypothèse d’une organisation fortement modulaire de M1.