6 resultados para Nucléotides
em Université de Montréal
Resumo:
Introduction Les lésions induites par les rayons UV peuvent causer des blocages dans la réplication de l'ADN. Ces dommages sont éliminés par le processus moléculaire très conservé de réparation par excision de nucléotides (NER). Nous avons précédemment démontré que la protéine ATR, une kinase majeure impliquée dans le stress réplicatif, est requise pour une NER efficace, et ce exclusivement durant la phase S. Des résultats subséquents ont suggéré que ce prérequis n’était pas lié à la réponse induite par ATR, mais plutôt d’une conséquence globale causée par la présence de stress réplicatif. En ce sens, nous mettons l’emphase qu’après irradiation UV, le complexe RPA joue un rôle crucial dans l'activation des mécanismes de NER ainsi que dans le redémarrage des fourches de réplication bloquées. Hypothèses: En général, les mutations qui confèrent une augmentation du stress réplicatif engendrent une séquestration excessive du facteur RPA aux fourches de réplication bloquées ce qui réduit son accessibilité pour le NER. Méthodes et résultats: Le modèle de la levure a été choisi pour vérifier cette hypothèse. Nous avons développé un essai de NER spécifique à chacune des phases du cycle cellulaire pour démontrer que les cellules déficientes en Mec1, l’homologue d’ATR, sont défectives dans la réparation par excision de nucléotides spécifiquement en phase S. De plus, plusieurs autres mutants de levure, caractérisés par un niveau de dommages spontanés élevé, ont aussi exhibé un défaut similaire. Ces mutants ont démontré une fréquence et une intensité de formation de foyers de RPA plus élevée. Finalement, une diminution partielle de RPA dans les levures a induit un défaut significatif dans le NER spécifiquement durant la phase S. Conclusion: Nos résultats supportent la notion que la séquestration de RPA aux fourches de réplication endommagées durant la phase S prévient son utilisation pour la réparation par excision de nucléotides ce qui inhibe fortement l'efficacité de réparation. Cette étude chez la levure facilite l’élucidation du phénomène analogue chez l’humain et, ultimement, comprend des implications majeures dans la compréhension du mécanisme de développement des cancers UV-dépendants.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Nous avons investigué la relation entre les polymorphismes de nucléotides simples (SNPs) chez trois gènes/loci candidats : DARC, CXCL2 et le loci ORMDL3-GSDMA-CSF3 situés sur le chromosome 17q21 et les complications neutropéniques et infectieuses qui en résultent durant la chimiothérapie chez les patients atteints de la leucémie lymphoblastique aigue. Ces loci codent pour certaines composantes du système immunitaire altérant la concentration de chémokines et leur distribution (DARC), stimulant le relâchement et la migration des neutophiles de la moelle épinière (CXCL2) et régulant la prolifération et la survie des granulocytes (G-CSF). Il est possible que des polymorphismes dans ces loci lorsqu’associés à de la chimiothérapie puissent mettre des individus suceptibles à un risque plus élevé de complication reliées à la chimiothérapie. Une sélection des marqueurs SNPs dans ces gènes ont été génotypés chez des enfants traités au CHU Ste-Justine pour une ALL entre 1989 et 2005. Après correction pour tests multiples, un polymorphisme DARC rs3027012 situé dans le 5’UTR a été associé à un compte phagocytaire peu élevé (APC<500 et <1000 cellules/µL, p=0.001 and p=0.0005, respectivement) ainsi qu’une hospitalisation due à une neutropénie (p=0.007) ou due à une infection et/ou neutropénie (p=0.007). Un effet protecteur a été identifié pour la mutation non sense Gly42Asp variant rs12075 (p=0.006). Des polymorphismes sur le chromosome 17q2 étaient associés à une hospitalisation due à une infection (rs3859192, p= 0.004) et à une neutropénie (rs17609240, p=0.006) L’infection était aussi modulée par CXCL2 (rs16850408, p=0.008) Cette étude identifie pour la première fois que les loci modulant le décompte des leucocytes et des neutrophiles pourraient jouer un rôle dans de déclenchement de complications dues à la chimiothérapie et pourraient ainsi servir de marqueurs pour un ajustement et un suivi du traitement.
Resumo:
Endothelial cells (EC) are essential regulator of vascular homeostasis through the generation and release of various bioactive agents, including nitric oxide (NO). NO modulates several vascular functions such as vascular tone and permeability, through the stimulation of soluble guanylate cyclase (sGC) leading to the production of cGMP. Conversely, phosphodiesterases (PDEs) are enzymes metabolizing cyclic nucleotides (cGMP and cAMP) and are therefore major regulatory players for cGMP and cAMP signalling pathways. Although ECs are the main source of NO, little is known on the endothelial NO-cGMP signalling pathway and cellular outcomes. It was then hypothesized that a specific population of cGMP-phosphodiesterases allows ECs to stabilize cGMP levels despite the elevated production of NO. Expression of cGMP-phosphodiesterases was initially studied in resistance mesenteric arteries from mice. PDE5 and PDE6 were both found at mRNA and protein levels in native arteries but PDE6 is not found in cultured ECs. Interestingly, subcellular distributions of both enzymes were distinct. PDE5 appeared to be homogeneously distributed whilst PDE6 catalytic subunits (PDE6 and PDE6) showed a preferential staining in the perinuclear region. These results suggest that PDE6 might be involved in the regulation of cGMP microdomains. Based on these findings, a mathematical model was developed. Simulations of dynamic cGMP levels in ECs support the notion of cGMP microdomains dependent on PDE6 expression and localization. In the absence of PDE6, application of NO either as a single bolus or repetitive pulses led to a homogeneous increase in cGMP levels in ECs despite PDE5 homogeneous distribution. However, PDE6 subcellular targeting to the perinuclear membrane generated a cGMP-depleted perinuclear space. The findings from this study provide the first evidence of the expression and specific intracellular distribution of PDE6 in native endothelial cells that strongly support their involvement in the generation of cGMP microdomains
Resumo:
Le fer est un micronutriment important pour la croissance et le développement des plantes. Il agit comme cofacteur pour plusieurs enzymes et il est important pour des processus tels que la photosynthèse et la respiration. Souvent, le Fe dans le sol n’est pas bio-disponible pour la plante. Les plantes ont développé des stratégies pour solubiliser le Fe du sol pour le rendre disponible et assimilable pour elles. Il y a deux stratégies, la première est caractéristique des dicotylédones et la seconde est caractéristique des monocotylédones. Le modèle utilisé dans cette étude est une culture cellulaire de Solanum tuberosum. Une partie de la recherche effectuée a permis la mesure d’activité et d’expression relative de certaines enzymes impliquées dans le métabolisme énergétique et la fourniture de précurseurs pour la synthèse d’ADN : la Nucléoside diphosphate kinase, la Ribonucléotide reductase, la Glucose 6-phosphate déshydrogénase et la 6-Phosphogluconate déshydrogénase dans les cellules en présence ou en absence de Fe. Chez certains organismes, la déficience en Fe est associée à une perte de croissance qui est souvent liée à une diminution de la synthèse d’ADN. Chez les cultures de cellules de S. tuberosum, les résultats indiquent que la différence de biomasse observée entre les traitements n’est pas due à une variation de l’activité ou l’expression relative d’une de ces enzymes. En effet, aucune variation significative n’a été détectée entre les traitements (+/- Fe) pour l’activité ni l’expression relative de ces enzymes. Une autre partie de la recherche a permis d’évaluer l’activité des voies métaboliques impliquées dans la stratégie 1 utilisée par S. tuberosum. Cette stratégie consomme des métabolites énergétiques: de l’ATP pour solubiliser le Fe et du pouvoir réducteur (NAD(P)H), pour réduire le Fe3+ en Fe2+. Des études de flux métaboliques ont été faites afin d’étudier les remaniements du métabolisme carboné en déficience en Fe chez S. tuberosum. Ces études ont démontré une baisse du régime dans les différentes voies du métabolisme énergétique dans les cellules déficientes en Fe, notamment dans le flux glycolytique et le flux de C à travers la phosphoenolpyruvate carboxylase. En déficience de Fe il y aurait donc une dépression du métabolisme chez S. tuberosum qui permettrait à la cellule de ralentir son métabolisme pour maintenir sa vitalité. En plus des flux, les niveaux de pyridines nucléotides ont été mesurés puisque ceux-ci servent à réduire le Fe dans la stratégie 1. Les résultats démontrent des niveaux élevés des formes réduites de ces métabolites en déficience de Fe. L’ensemble des résultats obtenus indiquent qu’en déficience de Fe, il y a une baisse du métabolisme permettant à la cellule de s’adapter et survivre au stress.