3 resultados para Linear Attention,Conditional Language Model,Natural Language Generation,FLAX,Rare diseases
em Université de Montréal
Resumo:
L’objectif de cette thèse est l’étude du développement de l’attention auditive et des capacités de discrimination langagière chez l’enfant né prématurément ou à terme. Les derniers mois de grossesse sont particulièrement importants pour le développement cérébral de l’enfant et les conséquences d’une naissance prématurée sur le développement peuvent être considérables. Les enfants nés prématurément sont plus à risque de développer une variété de troubles neurodéveloppementaux que les enfants nés à terme. Même en l’absence de dommages cérébraux visibles, de nombreux enfants nés avant terme sont à risque de présenter des troubles tels que des retards langagiers ou des difficultés attentionnelles. Dans cette thèse, nous proposons donc une méthode d’investigation des processus préattentionnels auditifs et de discrimination langagière, à l’aide de l’électrophysiologie à haute densité et des potentiels évoqués auditifs (PEAs). Deux études ont été réalisées. La première visait à mettre sur pied un protocole d’évaluation de l’attention auditive et de la discrimination langagière chez l’enfant en santé, couvrant différents stades de développement (3 à 7 ans, 8 à 13 ans, adultes ; N = 40). Pour ce faire, nous avons analysé la composante de Mismatch Negativity (MMN) évoquée par la présentation de sons verbaux (syllabes /Ba/ et /Da/) et non verbaux (tons synthétisés, Ba : 1578 Hz/2800 Hz ; Da : 1788 Hz/2932 Hz). Les résultats ont révélé des patrons d’activation distincts en fonction de l’âge et du type de stimulus présenté. Chez tous les groupes d’âge, la présentation des stimuli non verbaux a évoqué une MMN de plus grande amplitude et de latence plus rapide que la présentation des stimuli verbaux. De plus, en réponse aux stimuli verbaux, les deux groupes d’enfants (3 à 7 ans, 8 à 13 ans) ont démontré une MMN de latence plus tardive que celle mesurée dans le groupe d’adultes. En revanche, en réponse aux stimuli non verbaux, seulement le groupe d’enfants de 3 à 7 ans a démontré une MMN de latence plus tardive que le groupe d’adulte. Les processus de discrimination verbaux semblent donc se développer plus tardivement dans l’enfance que les processus de discrimination non verbaux. Dans la deuxième étude, nous visions à d’identifier les marqueurs prédictifs de déficits attentionnels et langagiers pouvant découler d’une naissance prématurée à l’aide des PEAs et de la MMN. Nous avons utilisé le même protocole auprès de 74 enfants âgés de 3, 12 et 36 mois, nés prématurément (avant 34 semaines de gestation) ou nés à terme (au moins 37 semaines de gestation). Les résultats ont révélé que les enfants nés prématurément de tous les âges démontraient un délai significatif dans la latence de la réponse MMN et de la P150 par rapport aux enfants nés à terme lors de la présentation des sons verbaux. De plus, les latences plus tardives de la MMN et de la P150 étaient également corrélées à des performances langagières plus faibles lors d’une évaluation neurodéveloppementale. Toutefois, aucune différence n’a été observée entre les enfants nés à terme ou prématurément lors de la discrimination des stimuli non verbaux, suggérant des capacités préattentionnelles auditives préservées chez les enfants prématurés. Dans l’ensemble, les résultats de cette thèse indiquent que les processus préattentionnels auditifs se développent plus tôt dans l'enfance que ceux associés à la discrimination langagière. Les réseaux neuronaux impliqués dans la discrimination verbale sont encore immatures à la fin de l'enfance. De plus, ceux-ci semblent être particulièrement vulnérables aux impacts physiologiques liés à la prématurité. L’utilisation des PEAs et de la MMN en réponse aux stimuli verbaux en bas âge peut fournir des marqueurs prédictifs des difficultés langagières fréquemment observées chez l’enfant prématuré.
Resumo:
Lors du transport du bois de la forêt vers les usines, de nombreux événements imprévus peuvent se produire, événements qui perturbent les trajets prévus (par exemple, en raison des conditions météo, des feux de forêt, de la présence de nouveaux chargements, etc.). Lorsque de tels événements ne sont connus que durant un trajet, le camion qui accomplit ce trajet doit être détourné vers un chemin alternatif. En l’absence d’informations sur un tel chemin, le chauffeur du camion est susceptible de choisir un chemin alternatif inutilement long ou pire, qui est lui-même "fermé" suite à un événement imprévu. Il est donc essentiel de fournir aux chauffeurs des informations en temps réel, en particulier des suggestions de chemins alternatifs lorsqu’une route prévue s’avère impraticable. Les possibilités de recours en cas d’imprévus dépendent des caractéristiques de la chaîne logistique étudiée comme la présence de camions auto-chargeurs et la politique de gestion du transport. Nous présentons trois articles traitant de contextes d’application différents ainsi que des modèles et des méthodes de résolution adaptés à chacun des contextes. Dans le premier article, les chauffeurs de camion disposent de l’ensemble du plan hebdomadaire de la semaine en cours. Dans ce contexte, tous les efforts doivent être faits pour minimiser les changements apportés au plan initial. Bien que la flotte de camions soit homogène, il y a un ordre de priorité des chauffeurs. Les plus prioritaires obtiennent les volumes de travail les plus importants. Minimiser les changements dans leurs plans est également une priorité. Étant donné que les conséquences des événements imprévus sur le plan de transport sont essentiellement des annulations et/ou des retards de certains voyages, l’approche proposée traite d’abord l’annulation et le retard d’un seul voyage, puis elle est généralisée pour traiter des événements plus complexes. Dans cette ap- proche, nous essayons de re-planifier les voyages impactés durant la même semaine de telle sorte qu’une chargeuse soit libre au moment de l’arrivée du camion à la fois au site forestier et à l’usine. De cette façon, les voyages des autres camions ne seront pas mo- difiés. Cette approche fournit aux répartiteurs des plans alternatifs en quelques secondes. De meilleures solutions pourraient être obtenues si le répartiteur était autorisé à apporter plus de modifications au plan initial. Dans le second article, nous considérons un contexte où un seul voyage à la fois est communiqué aux chauffeurs. Le répartiteur attend jusqu’à ce que le chauffeur termine son voyage avant de lui révéler le prochain voyage. Ce contexte est plus souple et offre plus de possibilités de recours en cas d’imprévus. En plus, le problème hebdomadaire peut être divisé en des problèmes quotidiens, puisque la demande est quotidienne et les usines sont ouvertes pendant des périodes limitées durant la journée. Nous utilisons un modèle de programmation mathématique basé sur un réseau espace-temps pour réagir aux perturbations. Bien que ces dernières puissent avoir des effets différents sur le plan de transport initial, une caractéristique clé du modèle proposé est qu’il reste valable pour traiter tous les imprévus, quelle que soit leur nature. En effet, l’impact de ces événements est capturé dans le réseau espace-temps et dans les paramètres d’entrée plutôt que dans le modèle lui-même. Le modèle est résolu pour la journée en cours chaque fois qu’un événement imprévu est révélé. Dans le dernier article, la flotte de camions est hétérogène, comprenant des camions avec des chargeuses à bord. La configuration des routes de ces camions est différente de celle des camions réguliers, car ils ne doivent pas être synchronisés avec les chargeuses. Nous utilisons un modèle mathématique où les colonnes peuvent être facilement et naturellement interprétées comme des itinéraires de camions. Nous résolvons ce modèle en utilisant la génération de colonnes. Dans un premier temps, nous relaxons l’intégralité des variables de décision et nous considérons seulement un sous-ensemble des itinéraires réalisables. Les itinéraires avec un potentiel d’amélioration de la solution courante sont ajoutés au modèle de manière itérative. Un réseau espace-temps est utilisé à la fois pour représenter les impacts des événements imprévus et pour générer ces itinéraires. La solution obtenue est généralement fractionnaire et un algorithme de branch-and-price est utilisé pour trouver des solutions entières. Plusieurs scénarios de perturbation ont été développés pour tester l’approche proposée sur des études de cas provenant de l’industrie forestière canadienne et les résultats numériques sont présentés pour les trois contextes.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.