2 resultados para Kinetic Studies
em Université de Montréal
Resumo:
Les ribozymes sont des ARN catalytiques fréquemment exploités pour le développement d’outils biochimiques et d’agents thérapeutiques. Ils sont particulièrement intéressants pour effectuer l’inactivation de gènes, en permettant la dégradation d’ARNm ou d’ARN viraux associés à des maladies. Les ribozymes les plus utilisés en ce moment pour le développement d’agents thérapeutiques sont les ribozymes hammerhead et hairpin, qui permettent la reconnaissance spécifique d’ARN simple brin par la formation de structures secondaires stables. In vivo, la majorité des ARN adoptent des structures secondaires et tertiaires complexes et les régions simples brins sont parfois difficiles d’accès. Il serait intéressant de pouvoir cibler des ARN repliés et un motif d’ARN intéressant à cibler est la tige-boucle d’ARN qui peut être importante dans le repliement global des ARN et pour accomplir des fonctions biologiques. Le ribozyme VS de Neurospora fait la reconnaissance de son substrat replié en tigeboucle de façon spécifique par une interaction kissing-loop, mais il n’a jamais été exploité pour faire la reconnaissance d’un ARN cible très différent de son substrat naturel. Le but des travaux présentés dans cette thèse est de déterminer si le ribozyme VS possède l’adaptabilité nécessaire pour l’ingénierie de ribozymes qui clivent des ARN cibles différents du substrat naturel. Dans le cadre de cette thèse, le ribozyme VS a été modifié pour l’adapter à différents substrats et des études de cinétiques ont été réalisées pour évaluer l’impact de ces modifications sur l’activité de clivage du ribozyme. Dans un premier temps, le ribozyme a été modifié pour faire la reconnaissance et le clivage de substrats possédant différentes longueurs de tiges Ib. Le ribozyme a été adapté avec succès à ces substrats de différentes longueurs de tige Ib, avec une activité qui est similaire à celle du ribozyme avec un substrat sans modification. Dans un deuxième temps, c’est l’interaction kissing-loop I/V du ribozyme qui a été substituée de façon rationnelle, dans le but de savoir si un ribozyme VS mutant peut reconnaitre et cliver un substrat ayant une boucle différente de celle de son substrat naturel. L’interaction kissing-loop I/V a été substituée pour les interactions kissing-loop TAR/TAR* de l’ARN du VIH-1 et L22/L88 de l’ARN 23S de Deinococcus radiodurans. La réaction de iii clivage des ribozymes comportant ces nouvelles interactions kissing-loop est toujours observée, mais avec une activité diminuée. Finalement, la sélection in vitro (SELEX) de ribozymes a été effectuée pour permettre un clivage plus efficace d’un substrat mutant avec une nouvelle boucle. Le SELEX a permis la sélection d’un ribozyme qui clive un substrat avec une boucle terminale mutée pour celle de l’ARN TAR du VIH-1 et cela avec une activité de clivage très efficace. L’ensemble de ces études démontre que le ribozyme VS peut être modifié de diverses façons pour la reconnaissance spécifique de différents substrats, tout en conservant une bonne activité de clivage. Ces résultats montrent le grand potentiel d’ingénierie du ribozyme VS et sont prometteurs pour la poursuite d’études d’ingénierie du ribozyme VS, en vue du clivage d’ARN cibles repliés en tige-boucle complètement différents du substrat naturel du ribozyme VS.
Resumo:
Ce mémoire traite de la chimie des complexes pinceurs de nickel (II) cationiques ayant un ligand de type POCOP. Elle se divise en deux parties. La première traite de la synthèse, de la caractérisation et de la réactivité des complexes cationiques pinceurs de Ni(II) de type POCOP (POCOP = 1,3-bis(phosphinitobenzene), où C fait partie d’un cycle benzénique et est lié au métal, et P est un ligand phosphoré aussi lié au métal). Ces complexes ont un ligand acétonitrile coordonné au centre métallique et sont du type [(R-POCOPR’)Ni(NCMe)][OSO2CF3], où R est un substituant du cycle benzénique et R’ est un substituant sur le ligand phosphoré (R’ = iPr: R = H (1), p-Me(2), p-OMe(3), p-CO2Me(4), p-Br(5), m,m-tBu2(6), m-OMe(7), m-CO2Me(8); R’ = t-Bu : R = H (9), p-CO2Me(10)). Les complexes cationiques sont préparés en faisant réagir le dérivé Ni(II) neutre correspondant R-(POCOPR’)Ni-Br avec Ag(OSO2CF3¬) dans l’acétonitrile à température ambiante. L’impact des groupements R et R’ du ligand POCOP sur la structure et sur les propriétées électroniques du complexe a été étudié par spectroscopies RMN, UV-VIS et IR, analyse électrochimique, et diffraction des rayons X. Les valeurs de fréquence du lien C≡N (ν(C≡N)) augmentent avec le caractère électroattracteur du complexe, dans l’ordre 7 < 3 ~ 2 ~ 6 < 1 < 5 ~ 8 < 4 et 9 < 10. Ces résultats sont en accord avec le fait qu’une augmentation du caractère électrophile du centre métallique devrait résulter en une augmentation de la donation σ MeCN→Ni. De plus, les complexes cationiques montrent tous un potentiel d’oxydation Ni(II)/Ni(III) plus élevé que leurs analogues neutres Ni-Br. Ensuite, une étude d’équilibre entre un complexe neutre (R-POCOPR’)NiBr et un complexe cationique [(R-POCOPR’)Ni(NCMe)][OSO2CF3] démontre l’échange facile des ligands MeCN et Br. La deuxième partie de ce mémoire consiste en deux chapitres. Le premier (Chapitre 3) est une étude structurelle permettant une meilleure compréhension du mécanisme d’hydroamination des oléfines activées promue par les complexes présentés au chapitre 1, suivi de tentatives de synthèse de nouveaux composés POCOP cationiques comportant un ligand amine et nitrile, et de déplacement du groupement amine par un groupement nitrile. Le deuxième chapitre (4) décrit la réactivité et la cinétique de la réaction d’hydroamination et d’hydroalkoxylation d’oléfines activées, qui permet ainsi de mieux comprendre l’impact des différentes variables du système (groupements R et R’, température, substrats, solvent, etc.) sur la réactivité catalytique.