2 resultados para Extraction. Copper. Nickel. Microemulsion. Winsor II. Winsor III

em Université de Montréal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce mémoire traite de la chimie des complexes pinceurs de nickel (II) cationiques ayant un ligand de type POCOP. Elle se divise en deux parties. La première traite de la synthèse, de la caractérisation et de la réactivité des complexes cationiques pinceurs de Ni(II) de type POCOP (POCOP = 1,3-bis(phosphinitobenzene), où C fait partie d’un cycle benzénique et est lié au métal, et P est un ligand phosphoré aussi lié au métal). Ces complexes ont un ligand acétonitrile coordonné au centre métallique et sont du type [(R-POCOPR’)Ni(NCMe)][OSO2CF3], où R est un substituant du cycle benzénique et R’ est un substituant sur le ligand phosphoré (R’ = iPr: R = H (1), p-Me(2), p-OMe(3), p-CO2Me(4), p-Br(5), m,m-tBu2(6), m-OMe(7), m-CO2Me(8); R’ = t-Bu : R = H (9), p-CO2Me(10)). Les complexes cationiques sont préparés en faisant réagir le dérivé Ni(II) neutre correspondant R-(POCOPR’)Ni-Br avec Ag(OSO2CF3¬) dans l’acétonitrile à température ambiante. L’impact des groupements R et R’ du ligand POCOP sur la structure et sur les propriétées électroniques du complexe a été étudié par spectroscopies RMN, UV-VIS et IR, analyse électrochimique, et diffraction des rayons X. Les valeurs de fréquence du lien C≡N (ν(C≡N)) augmentent avec le caractère électroattracteur du complexe, dans l’ordre 7 < 3 ~ 2 ~ 6 < 1 < 5 ~ 8 < 4 et 9 < 10. Ces résultats sont en accord avec le fait qu’une augmentation du caractère électrophile du centre métallique devrait résulter en une augmentation de la donation σ MeCN→Ni. De plus, les complexes cationiques montrent tous un potentiel d’oxydation Ni(II)/Ni(III) plus élevé que leurs analogues neutres Ni-Br. Ensuite, une étude d’équilibre entre un complexe neutre (R-POCOPR’)NiBr et un complexe cationique [(R-POCOPR’)Ni(NCMe)][OSO2CF3] démontre l’échange facile des ligands MeCN et Br. La deuxième partie de ce mémoire consiste en deux chapitres. Le premier (Chapitre 3) est une étude structurelle permettant une meilleure compréhension du mécanisme d’hydroamination des oléfines activées promue par les complexes présentés au chapitre 1, suivi de tentatives de synthèse de nouveaux composés POCOP cationiques comportant un ligand amine et nitrile, et de déplacement du groupement amine par un groupement nitrile. Le deuxième chapitre (4) décrit la réactivité et la cinétique de la réaction d’hydroamination et d’hydroalkoxylation d’oléfines activées, qui permet ainsi de mieux comprendre l’impact des différentes variables du système (groupements R et R’, température, substrats, solvent, etc.) sur la réactivité catalytique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les antimoniures sont des semi-conducteurs III-V prometteurs pour le développement de dispositifs optoélectroniques puisqu'ils ont une grande mobilité d'électrons, une large gamme spectrale d'émission ou de détection et offrent la possibilité de former des hétérostructures confinées dont la recombinaison est de type I, II ou III. Bien qu'il existe plusieurs publications sur la fabrication de dispositifs utilisant un alliage d'In(x)Ga(1-x)As(y)Sb(1-y) qui émet ou détecte à une certaine longueur d'onde, les détails, à savoir comment sont déterminés les compositions et surtout les alignements de bande, sont rarement explicites. Très peu d'études fondamentales sur l'incorporation d'indium et d'arsenic sous forme de tétramères lors de l'épitaxie par jets moléculaires existent, et les méthodes afin de déterminer l'alignement des bandes des binaires qui composent ces alliages donnent des résultats variables. Un modèle a été construit et a permis de prédire l'alignement des bandes énergétiques des alliages d'In(x)Ga(1-x)As(y)Sb(1-y) avec celles du GaSb pour l'ensemble des compositions possibles. Ce modèle tient compte des effets thermiques, des contraintes élastiques et peut aussi inclure le confinement pour des puits quantiques. De cette manière, il est possible de prédire la transition de type de recombinaison en fonction de la composition. Il est aussi montré que l'indium ségrègue en surface lors de la croissance par épitaxie par jets moléculaires d'In(x)Ga(1-x)Sb sur GaSb, ce qui avait déjà été observé pour ce type de matériau. Il est possible d'éliminer le gradient de composition à cette interface en mouillant la surface d'indium avant la croissance de l'alliage. L'épaisseur d'indium en surface dépend de la température et peut être évaluée par un modèle simple simulant la ségrégation. Dans le cas d'un puits quantique, il y aura une seconde interface GaSb sur In(x)Ga(1-x)Sb où l'indium de surface ira s'incorporer. La croissance de quelques monocouches de GaSb à basse température immédiatement après la croissance de l'alliage permet d'incorporer rapidement ces atomes d'indium et de garder la seconde interface abrupte. Lorsque la composition d'indium ne change plus dans la couche, cette composition correspond au rapport de flux d'atomes d'indium sur celui des éléments III. L'arsenic, dont la source fournit principalement des tétramères, ne s'incorpore pas de la même manière. Les tétramères occupent deux sites en surface et doivent interagir par paire afin de créer des dimères d'arsenic. Ces derniers pourront alors être incorporés dans l'alliage. Un modèle de cinétique de surface a été élaboré afin de rendre compte de la diminution d'incorporation d'arsenic en augmentant le rapport V/III pour une composition nominale d'arsenic fixe dans l'In(x)Ga(1-x)As(y)Sb(1-y). Ce résultat s'explique par le fait que les réactions de deuxième ordre dans la décomposition des tétramères d'arsenic ralentissent considérablement la réaction d'incorporation et permettent à l'antimoine d'occuper majoritairement la surface. Cette observation montre qu'il est préférable d'utiliser une source de dimères d'arsenic, plutôt que de tétramères, afin de mieux contrôler la composition d'arsenic dans la couche. Des puits quantiques d'In(x)Ga(1-x)As(y)Sb(1-y) sur GaSb ont été fabriqués et caractérisés optiquement afin d'observer le passage de recombinaison de type I à type II. Cependant, celui-ci n'a pas pu être observé puisque les spectres étaient dominés par un niveau énergétique dans le GaSb dont la source n'a pu être identifiée. Un problème dans la source de gallium pourrait être à l'origine de ce défaut et la résolution de ce problème est essentielle à la continuité de ces travaux.