2 resultados para Equivalent Effective Temperature
em Université de Montréal
Resumo:
Le but de cette thèse est d’explorer le potentiel sismique des étoiles naines blanches pulsantes, et en particulier celles à atmosphères riches en hydrogène, les étoiles ZZ Ceti. La technique d’astérosismologie exploite l’information contenue dans les modes normaux de vibration qui peuvent être excités lors de phases particulières de l’évolution d’une étoile. Ces modes modulent le flux émergent de l’étoile pulsante et se manifestent principalement en termes de variations lumineuses multi-périodiques. L’astérosismologie consiste donc à examiner la luminosité d’étoiles pulsantes en fonction du temps, afin d’en extraire les périodes, les amplitudes apparentes, ainsi que les phases relatives des modes de pulsation détectés, en utilisant des méthodes standards de traitement de signal, telles que des techniques de Fourier. L’étape suivante consiste à comparer les périodes de pulsation observées avec des périodes générées par un modèle stellaire en cherchant l’accord optimal avec un modèle physique reconstituant le plus fidèlement possible l’étoile pulsante. Afin d’assurer une recherche optimale dans l’espace des paramètres, il est nécessaire d’avoir de bons modèles physiques, un algorithme d’optimisation de comparaison de périodes efficace, et une puissance de calcul considérable. Les périodes des modes de pulsation de modèles stellaires de naines blanches peuvent être généralement calculées de manière précise et fiable sur la base de la théorie linéaire des pulsations stellaires dans sa version adiabatique. Afin de définir dans son ensemble un modèle statique de naine blanche propre à l’analyse astérosismologique, il est nécessaire de spécifier la gravité de surface, la température effective, ainsi que différents paramètres décrivant la disposition en couche de l’enveloppe. En utilisant parallèlement les informations obtenues de manière indépendante (température effective et gravité de surface) par la méthode spectroscopique, il devient possible de vérifier la validité de la solution obtenue et de restreindre de manière remarquable l’espace des paramètres. L’exercice astérosismologique, s’il est réussi, mène donc à la détermination précise des paramètres de la structure globale de l’étoile pulsante et fournit de l’information unique sur sa structure interne et l’état de sa phase évolutive. On présente dans cette thèse l’analyse complète réussie, de l’extraction des fréquences à la solution sismique, de quatre étoiles naines blanches pulsantes. Il a été possible de déterminer les paramètres structuraux de ces étoiles et de les comparer remarquablement à toutes les contraintes indépendantes disponibles dans la littérature, mais aussi d’inférer sur la dynamique interne et de reconstruire le profil de rotation interne. Dans un premier temps, on analyse le duo d’étoiles ZZ Ceti, GD 165 et Ross 548, afin de comprendre les différences entre leurs propriétés de pulsation, malgré le fait qu’elles soient des étoiles similaires en tout point, spectroscopiquement parlant. L’analyse sismique révèle des structures internes différentes, et dévoile la sensibilité de certains modes de pulsation à la composition interne du noyau de l’étoile. Afin de palier à cette sensibilité, nouvellement découverte, et de rivaliser avec les données de qualité exceptionnelle que nous fournissent les missions spatiales Kepler et Kepler2, on développe une nouvelle paramétrisation des profils chimiques dans le coeur, et on valide la robustesse de notre technique et de nos modèles par de nombreux tests. Avec en main la nouvelle paramétrisation du noyau, on décroche enfin le ”Saint Graal” de l’astérosismologie, en étant capable de reproduire pour la première fois les périodes observées à la précision des observations, dans le cas de l’étude sismique des étoiles KIC 08626021 et de GD 1212.
Resumo:
Ce mémoire présente une recherche détaillée et une analyse des étoiles naines blanches hybrides chimiquement stratifiées dans le Sloan Digital Sky Survey (SDSS). Une seule étoile stratifiée, PG 1305-017, était connue avant notre recherche. L'objectif principal est de confirmer l'existence de plusieurs nouvelles étoiles stratifiées. Pour ce faire, il a fallu dans un premier temps développer une nouvelle génération de modèles d'atmosphère à partir de ceux de Bergeron et al. (1991) et Tremblay & Bergeron (2009). Nous y avons ajouté l'opacité de toutes les raies d'hélium et les calculs nécessaires pour tenir compte de la stratification chimique de l'atmosphère, où une mince quantité d’hydrogène flotte en équilibre diffusif au-dessus d’une enveloppe massive d’hélium. En parallèle, nous avons aussi calculé des modèles standards, chimiquement homogènes. Ensuite, nous avons sélectionné des naines blanches chaudes (Teff > 30,000 K) de type spectral hybride (traces d'hélium et d'hydrogène) parmi les ~38,000 naines blanches répertoriées dans le SDSS. Un total de 52 spectres d'étoile a été retenu dans notre échantillon final. La technique spectroscopique, c'est-à-dire l'ajustement des raies spectrales des modèles sur un spectre observé, a été appliquée à toutes les étoiles de notre échantillon. Nous avons ainsi mesuré la température effective, la gravité de surface et la composition chimique de l'atmosphère de ces étoiles. Par l'ajustement simultané de modèles stratifiés et homogènes, nous avons aussi pu déterminer si les étoiles étaient stratifiées ou non. Nous identifions ainsi 14 naines blanches stratifiées. Nous tirons de ces résultats plusieurs conclusions sur les processus physiques expliquant la présence d'hélium dans l'atmosphère.