2 resultados para CL-SR system
em Université de Montréal
Resumo:
À la fin du 19e siècle, Dr. Ramón y Cajal, un pionnier scientifique, a découvert les éléments cellulaires individuels, appelés neurones, composant le système nerveux. Il a également remarqué la complexité de ce système et a mentionné l’impossibilité de ces nouveaux neurones à être intégrés dans le système nerveux adulte. Une de ses citations reconnues : “Dans les centres adultes, les chemins nerveux sont fixes, terminés, immuables. Tout doit mourir, rien ne peut être régénérer” est représentative du dogme de l’époque (Ramón y Cajal 1928). D’importantes études effectuées dans les années 1960-1970 suggèrent un point de vue différent. Il a été démontré que les nouveaux neurones peuvent être générés à l’âge adulte, mais cette découverte a créé un scepticisme omniprésent au sein de la communauté scientifique. Il a fallu 30 ans pour que le concept de neurogenèse adulte soit largement accepté. Cette découverte, en plus de nombreuses avancées techniques, a ouvert la porte à de nouvelles cibles thérapeutiques potentielles pour les maladies neurodégénératives. Les cellules souches neurales (CSNs) adultes résident principalement dans deux niches du cerveau : la zone sous-ventriculaire des ventricules latéraux et le gyrus dentelé de l’hippocampe. En condition physiologique, le niveau de neurogenèse est relativement élevé dans la zone sous-ventriculaire contrairement à l’hippocampe où certaines étapes sont limitantes. En revanche, la moelle épinière est plutôt définie comme un environnement en quiescence. Une des principales questions qui a été soulevée suite à ces découvertes est : comment peut-on activer les CSNs adultes afin d’augmenter les niveaux de neurogenèse ? Dans l’hippocampe, la capacité de l’environnement enrichi (incluant la stimulation cognitive, l’exercice et les interactions sociales) à promouvoir la neurogenèse hippocampale a déjà été démontrée. La plasticité de cette région est importante, car elle peut jouer un rôle clé dans la récupération de déficits au niveau de la mémoire et l’apprentissage. Dans la moelle épinière, des études effectuées in vitro ont démontré que les cellules épendymaires situées autour du canal central ont des capacités d’auto-renouvellement et de multipotence (neurones, astrocytes, oligodendrocytes). Il est intéressant de noter qu’in vivo, suite à une lésion de la moelle épinière, les cellules épendymaires sont activées, peuvent s’auto-renouveller, mais peuvent seulement ii donner naissance à des cellules de type gliale (astrocytes et oligodendrocytes). Cette nouvelle fonction post-lésion démontre que la plasticité est encore possible dans un environnement en quiescence et peut être exploité afin de développer des stratégies de réparation endogènes dans la moelle épinière. Les CSNs adultes jouent un rôle important dans le maintien des fonctions physiologiques du cerveau sain et dans la réparation neuronale suite à une lésion. Cependant, il y a peu de données sur les mécanismes qui permettent l'activation des CSNs en quiescence permettant de maintenir ces fonctions. L'objectif général est d'élucider les mécanismes sous-jacents à l'activation des CSNs dans le système nerveux central adulte. Pour répondre à cet objectif, nous avons mis en place deux approches complémentaires chez les souris adultes : 1) L'activation des CSNs hippocampales par l'environnement enrichi (EE) et 2) l'activation des CSNs de la moelle épinière par la neuroinflammation suite à une lésion. De plus, 3) afin d’obtenir plus d’information sur les mécanismes moléculaires de ces modèles, nous utiliserons des approches transcriptomiques afin d’ouvrir de nouvelles perspectives. Le premier projet consiste à établir de nouveaux mécanismes cellulaires et moléculaires à travers lesquels l’environnement enrichi module la plasticité du cerveau adulte. Nous avons tout d’abord évalué la contribution de chacune des composantes de l’environnement enrichi à la neurogenèse hippocampale (Chapitre II). L’exercice volontaire promeut la neurogenèse, tandis que le contexte social augmente l’activation neuronale. Par la suite, nous avons déterminé l’effet de ces composantes sur les performances comportementales et sur le transcriptome à l’aide d’un labyrinthe radial à huit bras afin d’évaluer la mémoire spatiale et un test de reconnaissante d’objets nouveaux ainsi qu’un RNA-Seq, respectivement (Chapitre III). Les coureurs ont démontré une mémoire spatiale de rappel à court-terme plus forte, tandis que les souris exposées aux interactions sociales ont eu une plus grande flexibilité cognitive à abandonner leurs anciens souvenirs. Étonnamment, l’analyse du RNA-Seq a permis d’identifier des différences claires dans l’expression des transcripts entre les coureurs de courte et longue distance, en plus des souris sociales (dans l’environnement complexe). iii Le second projet consiste à découvrir comment les cellules épendymaires acquièrent les propriétés des CSNs in vitro ou la multipotence suite aux lésions in vivo (Chapitre IV). Une analyse du RNA-Seq a révélé que le transforming growth factor-β1 (TGF-β1) agit comme un régulateur, en amont des changements significatifs suite à une lésion de la moelle épinière. Nous avons alors confirmé la présence de cette cytokine suite à la lésion et caractérisé son rôle sur la prolifération, différentiation, et survie des cellules initiatrices de neurosphères de la moelle épinière. Nos résultats suggèrent que TGF-β1 régule l’acquisition et l’expression des propriétés de cellules souches sur les cellules épendymaires provenant de la moelle épinière.
Resumo:
La course d’endurance active le système de récompense (SR) et est reliée aux comportements de recherche alimentaire. L’influence de la leptine sur l’activité physique (AP) volontaire est bien documentée d’un point de vue physiologique, mais très peu en termes d’impact hédonique. La leptine inhibe l’effet récompensant lié à la consommation de nourriture et joue un rôle semblable pour d’autres types de stimuli. La leptine s’arrime à la forme longue du récepteur à la leptine (Leprb) situé sur les neurones à dopamine (DA) et GABA de l’aire tegmentale ventrale (ATV) dans le mésencéphale. Signal transducer and Activator of Transcription 3 (STAT3) est un facteur de transcription important de la cascade de signalisation de la leptine. La phosphorylation de STAT3 n’est détectée que dans une parcelle des neurones DA positifs pour le Leprb, conférant aux neurones DA STAT3-spécifiques des caractéristiques uniques. Nous avons généré un modèle murin invalidé pour STAT3 sélectivement dans les neurones DA (STAT3DAT-KO). La première expérience consistait à évaluer les paramètres métaboliques de base de notre modèle en utilisant les chambres métaboliques Comprehensive Lab Animal Monitoring System (CLAMS), incluant l’activité ambulatoire, le ratio d’échanges respiratoires (RER) et la production de chaleur. Les STAT3DAT-KO sont hyperactives, démontré par une activité locomotrice augmentée, mais aucune variation entre les deux groupes n’est observée pour le RER et la production de chaleur, en plus d’un gain de poids identique. Une stratégie de récupération ciblant la réinsertion de STAT3 dans les neurones DA du système mésolimbique normalise l’AP anciennement plus élevée des STAT3DAT-KO à celle des contrôles, suivant l’accès libre à une roue d’exercice (RE) pour une durée de 4 semaines, suivant l’accès libre à une roue d’exercice (RE) pour une durée de 4 semaines. L’injection d’un psychostimulant (agoniste du récepteur DA de type 1 (D1R), le Chloro-APB-Hydrobromide (SKF 82958)) reflète une fonction dopaminergique réduite chez les STAT3DAT-KO. Un test de recherche compulsive de nourriture révèle une suppression de la prise alimentaire chez les deux groupes expérimentaux. Nous démontrons pour la première fois que la motivation alliée à la course d’endurance, indépendamment de la régulation de la prise alimentaire par la leptine, est dépendant d’une signalisation leptine-STAT3 amoindrie dans les neurones DA du système mésolimbique, révélant STAT3 comme élément clé dans la régulation du tonus dopaminergique et des propriétés récompensantes de l’AP.