2 resultados para Bouquets de fleurs

em Université de Montréal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Travail créatif / Creative Work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les dinoflagellés sont des eucaryotes unicellulaires retrouvés dans la plupart des écosystèmes aquatiques du globe. Ces organismes amènent une contribution substantielle à la production primaire des océans, soit en tant que membre du phytoplancton, soit en tant que symbiontes des anthozoaires formant les récifs coralliens. Malheureusement, ce rôle écologique majeur est souvent négligé face à la capacité de certaines espèces de dinoflagellés à former des fleurs d'eau, parfois d'étendue et de durée spectaculaires. Ces floraisons d'algues, communément appelées "marées rouges", peuvent avoir de graves conséquences sur les écosystèmes côtiers, sur les industries de la pêche et du tourisme, ainsi que sur la santé humaine. Un des facteurs souvent corrélé avec la formation des fleurs d'eau est une augmentation dans la concentration de nutriments, notamment l’azote et le phosphore. Le nitrate est un des composants principaux retrouvés dans les eaux de ruissellement agricoles, mais également la forme d'azote bioaccessible la plus abondante dans les écosystèmes marins. Ainsi, l'agriculture humaine a contribué à magnifier significativement les problèmes associés aux marées rouges au niveau mondial. Cependant, la pollution ne peut pas expliquer à elle seule la formation et la persistance des fleurs d'eau, qui impliquent plusieurs facteurs biotiques et abiotiques. Il est particulièrement difficile d'évaluer l'importance relative qu'ont les ajouts de nitrate par rapport à ces autres facteurs, parce que le métabolisme du nitrate chez les dinoflagellés est largement méconnu. Le but principal de cette thèse vise à remédier à cette lacune. J'ai choisi Lingulodinium polyedrum comme modèle pour l'étude du métabolisme du nitrate, parce que ce dinoflagellé est facilement cultivable en laboratoire et qu'une étude transcriptomique a récemment fourni une liste de gènes pratiquement complète pour cette espèce. Il est également intéressant que certaines composantes moléculaires de la voie du nitrate chez cet organisme soient sous contrôle circadien. Ainsi, dans ce projet, j'ai utilisé des analyses physiologiques, biochimiques, transcriptomiques et bioinformatiques pour enrichir nos connaissances sur le métabolisme du nitrate des dinoflagellés et nous permettre de mieux apprécier le rôle de l'horloge circadienne dans la régulation de cette importante voie métabolique primaire. Je me suis tout d'abord penché sur les cas particuliers où des floraisons de dinoflagellés sont observées dans des conditions de carence en azote. Cette idée peut sembler contreintuitive, parce que l'ajout de nitrate plutôt que son épuisement dans le milieu est généralement associé aux floraisons d'algues. Cependant, j’ai découvert que lorsque du nitrate était ajouté à des cultures initialement carencées ou enrichies en azote, celles qui s'étaient acclimatées au stress d'azote arrivaient à survivre près de deux mois à haute densité cellulaire, alors que les cellules qui n'étaient pas acclimatées mourraient après deux semaines. En condition de carence d'azote sévère, les cellules arrivaient à survivre un peu plus de deux semaines et ce, en arrêtant leur cycle cellulaire et en diminuant leur activité photosynthétique. L’incapacité pour ces cellules carencées à synthétiser de nouveaux acides aminés dans un contexte où la photosynthèse était toujours active a mené à l’accumulation de carbone réduit sous forme de granules d’amidon et corps lipidiques. Curieusement, ces deux réserves de carbone se trouvaient à des pôles opposés de la cellule, suggérant un rôle fonctionnel à cette polarisation. La deuxième contribution de ma thèse fut d’identifier et de caractériser les premiers transporteurs de nitrate chez les dinoflagellés. J'ai découvert que Lingulodinium ne possédait que très peu de transporteurs comparativement à ce qui est observé chez les plantes et j'ai suggéré que seuls les membres de la famille des transporteurs de nitrate de haute affinité 2 (NRT2) étaient réellement impliqués dans le transport du nitrate. Le principal transporteur chez Lingulodinium était exprimé constitutivement, suggérant que l’acquisition du nitrate chez ce dinoflagellé se fondait majoritairement sur un système constitutif plutôt qu’inductible. Enfin, j'ai démontré que l'acquisition du nitrate chez Lingulodinium était régulée par la lumière et non par l'horloge circadienne, tel qu'il avait été proposé dans une étude antérieure. Finalement, j’ai utilisé une approche RNA-seq pour vérifier si certains transcrits de composantes impliquées dans le métabolisme du nitrate de Lingulodinium étaient sous contrôle circadien. Non seulement ai-je découvert qu’il n’y avait aucune variation journalière dans les niveaux des transcrits impliqués dans le métabolisme du nitrate, j’ai aussi constaté qu’il n’y avait aucune variation journalière pour n’importe quel ARN du transcriptome de Lingulodinium. Cette découverte a démontré que l’horloge de ce dinoflagellé n'avait pas besoin de transcription rythmique pour générer des rythmes physiologiques comme observé chez les autres eukaryotes.