2 resultados para Adjustment of models
em Université de Montréal
Resumo:
L’intégration des technologies de l’information et de la communication (TIC) en contexte éducatif représente un moyen concret d’action et de réflexion en sciences de l’éducation. Les scientifiques et les acteurs de terrain se questionnent sur l’intégration des technologies et sur les moyens à mettre en place afin de réussir ce processus parfois complexe. De fait, la pénétration des outils technologiques dans les établissements scolaires a été exponentielle ces dernières années. Il est aujourd’hui nécessaire de comprendre selon quelles perspectives ces outils s’intègrent en salle de classe. Un exemple marquant est celui de la tablette tactile, récemment intégrée massivement dans les écoles d’Amérique du Nord et d’Europe. Cet outil, relativement récent dans la sphère scolaire, demande une réflexion précise vis-à-vis des pratiques pédagogiques des enseignants et des processus d’intégration inhérents. Afin de répondre à ces questionnements, nous avons élaboré une recherche en trois temps. Dans un premier temps, nous avons dressé un portrait exhaustif des pratiques pédagogiques des enseignants utilisant quotidiennement la tablette tactile en salle de classe. Ce portrait nous permet d’esquisser une synthèse des usages et réalités pédagogiques qui entourent cet outil. Dans un deuxième temps, nous avons répertorié, analysé et classifié les modèles d’intégration des TIC présents dans la littérature. L’analyse de ces modèles nous a permis d’en extraire les forces et les lacunes intrinsèques. Ensuite, nous avons créé un modèle synthèse rassemblant les réflexions issues de ces analyses. En parallèle, nous avons créé une typologie permettant d’identifier et de classifier ces modèles. Dans un troisième temps, nous sommes partis des pratiques pédagogiques des enseignants et du modèle général d’intégration des TIC que nous avons conçu afin de comprendre quel était le processus d’intégration de la tablette en salle de classe. Les résultats obtenus mettent en évidence que l’utilisation de la tablette induit des usages pédagogiques novateurs qui facilitent l’enseignement et qui favorisent l’apprentissage des élèves. Cependant, nous constatons que la tablette n’est pas utilisée à son plein potentiel et que certains usages devraient être envisagés selon une perspective plus efficiente et adaptée. En ce qui concerne les processus d’intégration, nous avons identifié plusieurs éléments indispensables: ces processus doivent être itératifs et constructifs, des facteurs internes et externes doivent être considérés et des niveaux d’intégration doivent être identifiés. Le modèle ainsi conçu spécifie le modèle à privilégier et les aboutissants à considérer. À la suite de cette étape, nous avons conçu un modèle d’intégration spécifiquement dédié à la tablette. Celui-ci met en évidence, au-delà des caractéristiques définies dans le modèle général, une nécessaire formation, une implication des acteurs, un ajustement constant des pratiques pédagogiques et une itération indispensable. À la suite de ces considérations, nous constatons que le processus d’appropriation de la tablette est en cours de construction et que les nouvelles implantations, comme les existantes, doivent procéder à une analyse minutieuse des tenants et aboutissants des pratiques médiées par l’intégration de l’outil. En fin de document, une synthèse des résultats et des recommandations est proposée afin de favoriser l’intégration de la tablette tactile - et des TIC en général – dans la salle de classe.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.