1 resultado para Adaptive object model
em Université de Montréal
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (12)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (46)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (28)
- Boston University Digital Common (68)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (17)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (28)
- CentAUR: Central Archive University of Reading - UK (40)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (9)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (53)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (10)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (35)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (35)
- Queensland University of Technology - ePrints Archive (151)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (21)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (2)
- SAPIENTIA - Universidade do Algarve - Portugal (8)
- Scielo Uruguai (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (45)
- Universidade Complutense de Madrid (3)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universita di Parma (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (4)
- University of Michigan (6)
- University of Queensland eSpace - Australia (19)
- University of Southampton, United Kingdom (3)
- University of Washington (6)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.