29 resultados para modèles multinomiaux
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.
Resumo:
Les patients atteints de maladies inflammatoires de l'intestin (MII) ont un risque accru de développer un cancer colorectal dû aux lésions épithéliales secondaires à l’inflammation chronique. La vitamine D (vD) régule NOD2, gène impliqué dans la réponse inflammatoire et dans la susceptibilité aux MII, et induit son expression dans les monocytes et dans l’épithélium intestinal. Dans ce projet, nous avons d’abord induit le cancer colorectal associé à la colite ulcéreuse (CAC) en administrant un traitement combiné d’azoxyméthane (AOM) et de dextran de sulfate de sodium (DSS) aux souris C57BL/6J. Par la suite, nous avons étudié l'effet d’une carence en vD3 sur le développement du CAC et évalué la capacité préventive d’une supplémentation en vD3 sur la tumorigenèse, et vérifié si cet effet est médié par NOD2, en utilisant les souris Nod2-/-. Les C57BL/6J et les Nod2-/-, ayant reçu une diète déficiente en vD3, étaient moins résistantes au CAC par rapport aux souris supplémentées. Le pourcentage de perte de poids, l’indice d’activation de la maladie (DAI), le taux de mortalité et le poids relatif du côlon (mg/cm) chez les souris déficientes en vD3 étaient plus élevés en comparaison avec celles supplémentées en vD3. Une augmentation du score d'inflammation et de la multiplicité tumorale corrélait avec une expression accentuée de l’Il6 dans les colonocytes des souris déficientes en vD3. La vD3 régulait l’expression génétique de Cyp24, Vdr et de gènes pro-inflammatoires chez les C57BL/6, comme chez les Nod2-/-. En conclusion, la supplémentation en vD3 peut prévenir le développement du CAC indépendamment de NOD2.
Resumo:
Cet essai est présenté en tant que mémoire de maîtrise dans le cadre du programme de droit des technologies de l’information. Ce mémoire traite de différents modèles d’affaires qui ont pour caractéristique commune de commercialiser les données dans le contexte des technologies de l’information. Les pratiques commerciales observées sont peu connues et l’un des objectifs est d’informer le lecteur quant au fonctionnement de ces pratiques. Dans le but de bien situer les enjeux, cet essai discutera d’abord des concepts théoriques de vie privée et de protection des renseignements personnels. Une fois ce survol tracé, les pratiques de « data brokerage », de « cloud computing » et des solutions « analytics » seront décortiquées. Au cours de cette description, les enjeux juridiques soulevés par chaque aspect de la pratique en question seront étudiés. Enfin, le dernier chapitre de cet essai sera réservé à deux enjeux, soit le rôle du consentement et la sécurité des données, qui ne relèvent pas d’une pratique commerciale spécifique, mais qui sont avant tout des conséquences directes de l’évolution des technologies de l’information.
Resumo:
Travail dirigé présenté à la Faculté des sciences infirmières en vue de l’obtention du grade de Maître ès sciences (M.Sc.) en sciences infirmières option formation des sciences infirmières