59 resultados para Gène candidat


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La Sclérose Latérale Amyotrophique (SLA) est une maladie neurodégénérative qui affecte les neurones moteurs. 10% des cas sont des cas familiaux et l’étude de ces familles a mené à la découverte de plusieurs gènes pouvant causer la SLA, incluant SOD1, TARDBP et FUS. L’expansion de la répétition GGGGCC dans le gène C9orf72 est, à ce jour, la cause la plus connue de SLA. L’impact de cette expansion est encore méconnu et il reste à déterminer si la toxicité est causée par un gain de fonction, une perte de fonction ou les deux. Plusieurs gènes impliqués dans la SLA sont conservés entre le nématode Caenorhabditis elegans et l’humain. C. elegans est un vers transparent fréquemment utilisé pour des études anatomiques, comportementales et génétiques. Il possède une lignée cellulaire invariable qui inclue 302 neurones. Aussi, les mécanismes de réponse au stress ainsi que les mécanismes de vieillissement sont très bien conservés entre ce nématode et l’humain. Donc, notre groupe, et plusieurs autres, ont utilisé C. elegans pour étudier plusieurs aspects de la SLA. Pour mieux comprendre la toxicité causée par l’expansion GGGGCC de C9orf72, nous avons développé deux modèles de vers pour étudier l’impact d’une perte de fonction ainsi que d’un gain de toxicité de l’ARN. Pour voir les conséquences d’une perte de fonction, nous avons étudié l’orthologue de C9orf72 dans C. elegans, alfa-1 (ALS/FTD associated gene homolog). Les vers mutants alfa-1(ok3062) développent des problèmes moteurs causant une paralysie et une dégénérescence spécifique des neurones moteurs GABAergiques. De plus, les mutants sont sensibles au stress osmotique qui provoque une dégénérescence. D’autre part, l’expression de la séquence d’ARN contenant une répétition pathogénique GGGGCC cause aussi des problèmes moteurs et de la dégénérescence affectant les neurones moteurs. Nos résultats suggèrent donc qu’un gain de toxicité de l’ARN ainsi qu’une perte de fonction de C9orf72 sont donc toxiques pour les neurones. Puisque le mouvement du vers peut être rapidement évalué en cultivant les vers dans un milieu liquide, nous avons développé un criblage de molécules pouvant affecter le mouvement des vers mutants alfa-1 en culture liquide. Plus de 4 000 composés ont été évalués et 80 ameliore la mobilité des vers alfa-1. Onze molécules ont aussi été testées dans les vers exprimant l’expansion GGGGCC et huit diminuent aussi le phénotype moteur de ces vers. Finalement, des huit molécules qui diminent la toxicité causée par la perte de fonction de C9orf72 et la toxicité de l’ARN, deux restaurent aussi l’expression anormale de plusieurs transcrits d’ARN observée dans des cellules dérivées de patient C9orf72. Avec ce projet, nous voulons identifier des molécules pouvant affecter tous les modes de toxicité de C9orf72 et possiblement ouvrir de nouvelles avenues thérapeutiques

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La possibilité de programmer une cellule dans le but de produire une protéine d’intérêt est apparue au début des années 1970 avec l’essor du génie génétique. Environ dix années plus tard, l’insuline issue de la plateforme de production microbienne Escherichia coli, fut la première protéine recombinante (r-protéine) humaine commercialisée. Les défis associés à la production de r-protéines plus complexes et glycosylées ont amené l’industrie biopharmaceutique à développer des systèmes d’expression en cellules de mammifères. Ces derniers permettent d’obtenir des protéines humaines correctement repliées et de ce fait, biologiquement actives. Afin de transférer le gène d’intérêt dans les cellules de mammifères, le polyéthylènimine (PEI) est certainement un des vecteurs synthétiques le plus utilisé en raison de son efficacité, mais aussi sa simplicité d’élaboration, son faible coût et sa stabilité en solution qui facilite son utilisation. Il est donc largement employé dans le contexte de la production de r-protéines à grande échelle et fait l’objet d’intenses recherches dans le domaine de la thérapie génique non virale. Le PEI est capable de condenser efficacement l’ADN plasmidique (vecteur d’expression contenant le gène d’intérêt) pour former des complexes de petites tailles appelés polyplexes. Ces derniers doivent contourner plusieurs étapes limitantes afin de délivrer le gène d’intérêt au noyau de la cellule hôte. Dans les conditions optimales du transfert de gène par le PEI, les polyplexes arborent une charge positive nette interagissant de manière électrostatique avec les protéoglycanes à héparane sulfate (HSPG) qui décorent la surface cellulaire. On observe deux familles d’HSPG exprimés en abondance à la surface des cellules de mammifères : les syndécanes (4 membres, SDC1-4) et les glypicanes (6 membres, GPC1-6). Si l’implication des HSPG dans l’attachement cellulaire des polyplexes est aujourd’hui largement acceptée, leur rôle individuel vis-à-vis de cet attachement et des étapes subséquentes du transfert de gène reste à confirmer. Après avoir optimisées les conditions de transfection des cellules de mammifères CHO et HEK293 dans le but de produire des r-protéines secrétées, nous avons entrepris des cinétiques de capture, d’internalisation des polyplexes et aussi d’expression du transgène afin de mieux comprendre le processus de transfert de gène. Nous avons pu observer des différences au niveau de ces paramètres de transfection dépendamment du système d’expression et des caractéristiques structurelles du PEI utilisé. Ces résultats présentés sous forme d’articles scientifiques constituent une base solide de l’enchaînement dans le temps des évènements essentiels à une transfection efficace des cellules CHO et HEK293 par le PEI. Chaque type cellulaire possède un profil d’expression des HSPG qui lui est propre, ces derniers étant plus ou moins permissifs au transfert de gène. En effet, une étude menée dans notre laboratoire montre que les SDC1 et SDC2 ont des rôles opposés vis-à-vis du transfert de gène. Alors que tous deux sont capables de lier les polyplexes, l’expression de SDC1 permet leur internalisation contrairement à l’expression de SDC2 qui l’inhibe. De plus, lorsque le SDC1 est exprimé à la surface des cellules HEK293, l’efficacité de transfection est augmentée de douze pourcents. En utilisant la capacité de SDC1 à induire l’internalisation des polyplexes, nous avons étudié le trafic intracellulaire des complexes SDC1 / polyplexes dans les cellules HEK293. De plus, nos observations suggèrent une nouvelle voie par laquelle les polyplexes pourraient atteindre efficacement le noyau cellulaire. Dans le contexte du transfert de gène, les HSPG sont essentiellement étudiés dans leur globalité. S’il est vrai que le rôle des syndécanes dans ce contexte est le sujet de quelques études, celui des glypicanes est inexploré. Grâce à une série de traitements chimiques et enzymatiques visant une approche « perte de fonction », l’importance de la sulfatation comme modification post-traductionnelle, l’effet des chaînes d’héparanes sulfates mais aussi des glypicanes sur l’attachement, l’internalisation des polyplexes, et l’expression du transgène ont été étudiés dans les cellules CHO et HEK293. L’ensemble de nos observations indique clairement que le rôle des HSPG dans le transfert de gène devrait être investigué individuellement plutôt que collectivement. En effet, le rôle spécifique de chaque membre des HSPG sur la capture des polyplexes et leur permissivité à l’expression génique demeure encore inconnu. En exprimant de manière transitoire chaque membre des syndécanes et glypicanes à la surface des cellules CHO, nous avons déterminé leur effet inhibiteur ou activateur sur la capture des polyplexes sans pouvoir conclure quant à l’effet de cette surexpression sur l’efficacité de transfection. Par contre, lorsqu’ils sont présents dans le milieu de culture, le domaine extracellulaire des HSPG réduit l’efficacité de transfection des cellules CHO sans induire la dissociation des polyplexes. Curieusement, lorsque chaque HSPG est exprimé de manière stable dans les cellules CHO, seulement une légère modulation de l’expression du transgène a pu être observée. Ces travaux ont contribué à la compréhension des mécanismes d'action du vecteur polycationique polyéthylènimine et à préciser le rôle des protéoglycanes à héparane sulfate dans le transfert de gène des cellules CHO et HEK293.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les maladies inflammatoires de l’intestin (MIIs, [MIM 266600]) sont caractérisées par une inflammation chronique au niveau du tube gastro-intestinal. Les deux principales formes sont la maladie de Crohn (MC) et la colite ulcéreuse (CU). Les MIIs résulteraient d’un défaut du système immunitaire et de l’épithélium intestinal. Ce dernier forme une barrière physique et biochimique qui sépare notre système immunitaire des microorganismes commensaux et pathogènes de la microflore intestinale. Un défaut dans la barrière épithéliale intestinale pourrait donc mener à une réponse immunitaire soutenue contre notre microflore intestinale. Les études d’association pangénomiques (GWAS) ont permis d’identifier 201 régions de susceptibilité aux MIIs. Parmi celles-ci, la région 1q32 associée à la MC (p<2x10-11) et à la CU (p<6x10-7) contient 4 gènes, dont C1orf106, un gène codant pour une protéine de fonction inconnue. Le re-séquençage de la région 1q32 a permis d’identifier une variante génétique rare de C1orf106 (MAF˂1%) associée aux MIIs (p=0,009), Y333F. Nous avons démontré que la substitution de la tyr333 par une phénylalanine semble avoir un effet sur la stabilité protéique de C1orf106 tel que démontré lors de l’inhibition de la synthèse protéique induite par le cycloheximide. Nous avons déterminé que C1orf106 est exprimé dans le côlon et l’intestin grêle. De plus, son expression est augmentée lors de la différenciation des cellules épithéliales Caco-2 en épithélium intestinal polarisé. Son profil d’expression correspond aux types cellulaires et tissulaires affectés dans les MIIs. De plus, C1orf106 est partiellement co-localisée avec le marqueur des jonctions serrées, ZO-1. Toutefois, son marquage reproduit parfaitement celui du marqueur des jonctions adhérentes, E-cadhérine. Les jonctions serrées et adhérentes sont localisées du côté apical de la jonction intercellulaire et sont toutes deux impliquées dans l’établissement de la barrière épithéliale. Nous avons donc testé l’impact de C1orf106 sur la perméabilité de l’épithélium intestinal. Nous avons observé une augmentation de la perméabilité épithéliale chez un épithélium intestinal formé par des cellules Caco-2 sous-exprimant C1orf106. Nos résultats suggèrent que C1orf106 pourrait être le gène causal de la région 1q32.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les virus ont besoin d’interagir avec des facteurs cellulaires pour se répliquer et se propager dans les cellules d’hôtes. Une étude de l'interactome des protéines du virus d'hépatite C (VHC) par Germain et al. (2014) a permis d'élucider de nouvelles interactions virus-hôte. L'étude a également démontré que la majorité des facteurs de l'hôte n'avaient pas d'effet sur la réplication du virus. Ces travaux suggèrent que la majorité des protéines ont un rôle dans d'autres processus cellulaires tel que la réponse innée antivirale et ciblées pas le virus dans des mécanismes d'évasion immune. Pour tester cette hypothèse, 132 interactant virus-hôtes ont été sélectionnés et évalués par silençage génique dans un criblage d'ARNi sur la production interferon-beta (IFNB1). Nous avons ainsi observé que les réductions de l'expression de 53 interactants virus-hôte modulent la réponse antivirale innée. Une étude dans les termes de gène d'ontologie (GO) démontre un enrichissement de ces protéines au transport nucléocytoplasmique et au complexe du pore nucléaire. De plus, les gènes associés avec ces termes (CSE1L, KPNB1, RAN, TNPO1 et XPO1) ont été caractérisé comme des interactant de la protéine NS3/4A par Germain et al. (2014), et comme des régulateurs positives de la réponse innée antivirale. Comme le VHC se réplique dans le cytoplasme, nous proposons que ces interactions à des protéines associées avec le noyau confèrent un avantage de réplication et bénéficient au virus en interférant avec des processus cellulaire tel que la réponse innée. Cette réponse innée antivirale requiert la translocation nucléaire des facteurs transcriptionnelles IRF3 et NF-κB p65 pour la production des IFNs de type I. Un essai de microscopie a été développé afin d'évaluer l’effet du silençage de 60 gènes exprimant des protéines associés au complexe du pore nucléaire et au transport nucléocytoplasmique sur la translocation d’IRF3 et NF-κB p65 par un criblage ARNi lors d’une cinétique d'infection virale. En conclusion, l’étude démontre qu’il y a plusieurs protéines qui sont impliqués dans le transport de ces facteurs transcriptionnelles pendant une infection virale et peut affecter la production IFNB1 à différents niveaux de la réponse d'immunité antivirale. L'étude aussi suggère que l'effet de ces facteurs de transport sur la réponse innée est peut être un mécanisme d'évasion par des virus comme VHC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Connaître le sexe d’un oiseau est important pour divers domaines notamment pour les vétérinaires, les écologistes ainsi que pour les éleveurs d’oiseaux qui veulent former des couples qui serviront à la reproduction. Plusieurs espèces d’oiseaux, juvéniles et adultes, n’ont pas de dimorphisme sexuel. L’utilisation de l’ADN est une façon rapide de déterminer le sexe à partir d’un échantillon de sang, de muscle, de plumes ou de fèces. Par contre, la méthode devrait être validée pour chaque espèce et idéalement, standardisée. Le premier objectif de cette étude est de développer une méthode de sexage par séquençage des oiseaux à partir des séquences du gène CHD, en utilisant les oiseaux de proie et les perroquets vus en clinique au Québec. Un deuxième objectif est de faire l’identification de l’espèce à sexer, à partir du gène mitochondrial COX-1 et aussi à partir des séquences CHD-Z et CHD-W, utilisés pour le sexage. Un troisième objectif est d’évaluer les séquences sorties (CHD-Z, CHD-W et COX-1) en vue d’une étude phylogénique. Une extraction d’ADN a été effectuée chez 27 espèces de perroquets, 34 espèces d’oiseaux de proie, une corneille (Corvus brachyrhynchos) et un poulet (Gallus gallus). Une amplification par PCR a été exécutée pour les exons partiels 23 et 24 du gène CHD. Le séquençage de cet amplicon permettait de savoir s’il s’agissait d’un mâle (séquence simple CHD-Z) ou d’une femelle (séquences CHD-Z et CHD-W qui se chevauchent). Afin d’avoir des séquences CHD-W distinctes, un sous-clonage a été fait chez les femelles de chaque espèce. De cette manière, les séquences partielles du gène CHD, Z et W, ont été trouvées pour les espèces échantillonnées. Une étude phylogénique a été effectuée avec les séquences de COX-1, CHD-Z et CHD-W grâce au site « Clustal-Omega ». La méthode de sexage des oiseaux par séquençage du gène CHD est standard et efficace. Le gène COX-1 permet une meilleure identification des espèces parentes et le gène CHD-Z est le plus utile pour étudier la phylogénie profonde.