1 resultado para power spectral analysis
em University of Canberra Research Repository - Australia
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (14)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (22)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Boston University Digital Common (1)
- Brock University, Canada (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (33)
- CentAUR: Central Archive University of Reading - UK (18)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (93)
- Cochin University of Science & Technology (CUSAT), India (17)
- Coffee Science - Universidade Federal de Lavras (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (94)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Memoria Académica - FaHCE, UNLP - Argentina (4)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (142)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (36)
- Queensland University of Technology - ePrints Archive (90)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (82)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (2)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (29)
- Universidade Complutense de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (3)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universidade Metodista de São Paulo (3)
- Université de Montréal (2)
- Université de Montréal, Canada (9)
- Université Laval Mémoires et thèses électroniques (2)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (7)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
The use of human brain electroencephalography (EEG) signals for automatic person identi cation has been investigated for a decade. It has been found that the performance of an EEG-based person identication system highly depends on what feature to be extracted from multi-channel EEG signals. Linear methods such as Power Spectral Density and Autoregressive Model have been used to extract EEG features. However these methods assumed that EEG signals are stationary. In fact, EEG signals are complex, non-linear, non-stationary, and random in nature. In addition, other factors such as brain condition or human characteristics may have impacts on the performance, however these factors have not been investigated and evaluated in previous studies. It has been found in the literature that entropy is used to measure the randomness of non-linear time series data. Entropy is also used to measure the level of chaos of braincomputer interface systems. Therefore, this thesis proposes to study the role of entropy in non-linear analysis of EEG signals to discover new features for EEG-based person identi- cation. Five dierent entropy methods including Shannon Entropy, Approximate Entropy, Sample Entropy, Spectral Entropy, and Conditional Entropy have been proposed to extract entropy features that are used to evaluate the performance of EEG-based person identication systems and the impacts of epilepsy, alcohol, age and gender characteristics on these systems. Experiments were performed on the Australian EEG and Alcoholism datasets. Experimental results have shown that, in most cases, the proposed entropy features yield very fast person identication, yet with compatible accuracy because the feature dimension is low. In real life security operation, timely response is critical. The experimental results have also shown that epilepsy, alcohol, age and gender characteristics have impacts on the EEG-based person identication systems.