1 resultado para human-computer visualization
em University of Canberra Research Repository - Australia
Filtro por publicador
- Repository Napier (2)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (4)
- Abertay Research Collections - Abertay University’s repository (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (11)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (41)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (161)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (52)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (54)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (81)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (7)
- Digital Commons at Florida International University (28)
- Digital Peer Publishing (12)
- DigitalCommons@The Texas Medical Center (10)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (22)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (13)
- Nottingham eTheses (2)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (35)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (39)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (2)
- Royal College of Art Research Repository - Uninet Kingdom (11)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (17)
- Scielo Saúde Pública - SP (8)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (36)
- Universidade de Madeira (1)
- Universidade do Minho (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universidade Metodista de São Paulo (1)
- Universita di Parma (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (49)
- Université de Montréal, Canada (13)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (2)
- University of Michigan (4)
- University of Queensland eSpace - Australia (53)
- University of Southampton, United Kingdom (1)
- University of Washington (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (5)
Resumo:
Automatic analysis of human behaviour in large collections of videos is gaining interest, even more so with the advent of file sharing sites such as YouTube. However, challenges still exist owing to several factors such as inter- and intra-class variations, cluttered backgrounds, occlusion, camera motion, scale, view and illumination changes. This research focuses on modelling human behaviour for action recognition in videos. The developed techniques are validated on large scale benchmark datasets and applied on real-world scenarios such as soccer videos. Three major contributions are made. The first contribution is in the area of proper choice of a feature representation for videos. This involved a study of state-of-the-art techniques for action recognition, feature extraction processing and dimensional reduction techniques so as to yield the best performance with optimal computational requirements. Secondly, temporal modelling of human behaviour is performed. This involved frequency analysis and temporal integration of local information in the video frames to yield a temporal feature vector. Current practices mostly average the frame information over an entire video and neglect the temporal order. Lastly, the proposed framework is applied and further adapted to real-world scenario such as soccer videos. A dataset consisting of video sequences depicting events of players falling is created from actual match data to this end and used to experimentally evaluate the proposed framework.