1 resultado para Non-stationary iterative method
em University of Canberra Research Repository - Australia
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Aston University Research Archive (51)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (74)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Bulgarian Digital Mathematics Library at IMI-BAS (13)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (77)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (16)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (57)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (6)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (18)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Open University Netherlands (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (101)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (54)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (30)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (87)
- Université de Montréal, Canada (32)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (30)
- University of Washington (2)
Resumo:
The use of human brain electroencephalography (EEG) signals for automatic person identi cation has been investigated for a decade. It has been found that the performance of an EEG-based person identication system highly depends on what feature to be extracted from multi-channel EEG signals. Linear methods such as Power Spectral Density and Autoregressive Model have been used to extract EEG features. However these methods assumed that EEG signals are stationary. In fact, EEG signals are complex, non-linear, non-stationary, and random in nature. In addition, other factors such as brain condition or human characteristics may have impacts on the performance, however these factors have not been investigated and evaluated in previous studies. It has been found in the literature that entropy is used to measure the randomness of non-linear time series data. Entropy is also used to measure the level of chaos of braincomputer interface systems. Therefore, this thesis proposes to study the role of entropy in non-linear analysis of EEG signals to discover new features for EEG-based person identi- cation. Five dierent entropy methods including Shannon Entropy, Approximate Entropy, Sample Entropy, Spectral Entropy, and Conditional Entropy have been proposed to extract entropy features that are used to evaluate the performance of EEG-based person identication systems and the impacts of epilepsy, alcohol, age and gender characteristics on these systems. Experiments were performed on the Australian EEG and Alcoholism datasets. Experimental results have shown that, in most cases, the proposed entropy features yield very fast person identication, yet with compatible accuracy because the feature dimension is low. In real life security operation, timely response is critical. The experimental results have also shown that epilepsy, alcohol, age and gender characteristics have impacts on the EEG-based person identication systems.