2 resultados para iPad[R] applications
em Scientific Open-access Literature Archive and Repository
Resumo:
This book presents research in the field of Geophysics, particularly referring to principles, applications and emerging technologies. Table of Contents: Preface pp. i-xxi Environmental Geophysics: Techniques, advantages and limitations (Pantelis Soupios and Eleni Kokinou, Department of Environmental and Natural Resources Engineering, Technological Educational Institute of Crete, Dynamics of the Ocean Floor, Helmholtz Centre for Ocean Research Kiel, Geomar)pp i-xxi Application of Innovative Geophysical Techniques in Coastal Areas (V. Di Fiore, M. Punzo, D. Tarallo, and G. Cavuoto, Institute for Marine Coastal Environment, National Research Council, Naples)pp. i-xxi Marine Geophysics of the Naples Bay (Southern Tyrrhenian sea, Italy): Principles, Applications and Emerging Technologies (Gemma Aiello and Ennio Marsella, Institute for Marine Coastal Environment, National Research Council, Naples)pp. i-xxi Oceanic Oscillation Phenomena: Relation to Synchronization and Stochastic Resonance (Shinya Shimokawa and Tomonori Matsuura, National Research Institute for Earth Science and Disaster Prevention, Univ. of Toyama)pp. i-xxi Assessment of ocean variability in the Sicily Channel from a numerical three-dimensional model using EOFs decomposition (R. Sorgente, A. Olita, A.F. Drago, A. Ribotti, L. Fazioli, and C. Tedesco, Institute for Marine Coastal Environment, National Research Council, Oristano)pp. i-xxi Monitoring Test of Crack Opening in Volcanic Tuff (Coroglio Cliff. Italy) Using Distributed Optical Fiber Sensor (A. Minardo, A. Coscetta, M. Caccavale, G. Esposito, F. Matano, M. Sacchi, R. Somma, G. Zeni, and L. Zeni, Department of Industrial and Information Eng., Second University of Naples Aversa, Institute for Marine Coastal Environment, National Research Council Naples, National Institute for Geophysics and Volcanology, Osservatorio Vesuviano Naples, Institute for Electromagnetic Sensing of the Environment, National Research Council Naples)pp. i-xxi
Resumo:
This text is taken from the postgraduate thesis, which one of the authors (A.B.) developed for the degree of Medical Physicist in the School on Medical Physics of the University of Florence. The text explores the feasibility of quantitative Magnetic Resonance Spectroscopy as a tool for daily clinical routine use. The results and analysis comes from two types of hyper spectral images: the first set are hyper spectral images coming from a standard phantom (reference images); and hyper spectral images obtained from a group of patients who have undergone MRI examinations at the Santa Maria Nuova Hospital. This interdisciplinary work stems from the IFAC-CNR know how in terms of data analysis and nanomedicine, and the clinical expertise of Radiologists and Medical Physicists. The results reported here, which were the subject of the thesis, are original, unpublished, and represent independent work.