2 resultados para Membrane of cellulose
em Scientific Open-access Literature Archive and Repository
Resumo:
The Whipple’ Disease (W.D.) is a very rare disease with an incidence of 1 per 1.000.000 inhabitants; it is a systemic infection that may mimic a wide spectrum of clinical disorders, which may have a fatal outcome and affects mainly male 40-50 years old. The infective agent is an actinomycete, Tropheryma Whipplei (T.W.) that was isolated 100 years after first description by Wipple, and identified in macrophages of mucosa of the small intestine by biopsy which is characterized by periodic acid-Schiff-positive, products of the inner membrane of his polysaccharide bacterial cell wall. The multisystemic clinical manifestations evolve rapidly towards an organic decay characterized by weight loss, malabsorption, diarrhea, polyathralgia, opthalmoplegia, neuro-psychiatric disorders and sometimes associated to endocarditis. Early antibiotic treatment with trimethoprim and sulfometathaxazole reduces the fatal evolution of the disease. The authors present a rare experience about a female subject in which the clinical gastrointestinal signs were preceded by neuro-psychiatric disorders, and evolved into obstruction and intestinal perforation which required an emergency surgery with temporary ileostomy, recanalized only after adequate medical treatment with a full dose of antibiotic and resolution of clinical disease for the high risks of fistulae for the edema and lymphadenopathy of mucosa. The diagnosis was histologically examined by intestinal biopsy performed during surgery, which showed PAS-positive histiocytes, while PRC polymerase RNA was negative, which confirms the high sensibility of PAS positive and low specificity of RNA polymerase for T.W.
Resumo:
Therapeutic plasmapheresis allows the extracorporeal removal of plasmatic lipoproteins (Lipid-apheresis) (LA). It can be non selective (non specific), semi - selective or selective low density lipoprotein-lipoprotein(a) (specific [LDL- Lp(a)] apheresis) (Lipoprotein apheresis, LDLa). The LDL removal rate is a perfect parameter to assess the system efficiency. Plasma-Exchange (PEX) cannot be considered either specific nor, selective. In PEX the whole blood is separated into plasma and its corpuscular components usually through centrifugation or rather filtration. The corpuscular components mixed with albumin solution plus saline (NaCl 0.9%) solution at 20%-25%, are then reinfused to the patient, to substitute the plasma formerly removed. PEX eliminates atherogenic lipoproteins, but also other essential plasma proteins, such as albumin, immunoglobulins, and hemocoagulatory mediators. Cascade filtration (CF) is a method based on plasma separation and removal of plasma proteins through double filtration. During the CF two hollow–fiber filters with pores of different diameter are used to eliminate the plasma components of different weight and molecular diameter. A CF system uses a first polypropylene filter with 0.55 µm diameter pores and a second one of diacetate of cellulose with 0.02 µm pores. The first filter separates the whole blood, and the plasma is then perfused through a second filter which allows the recovery of molecules with a diameter lower than 0.02 µm, and the removal of molecules larger in diameter as apoB100–containing lipoproteins. Since both albumin and immunoglobulins are not removed, or to a negligible extent, plasma-expanders, substitution fluids, and in particular albumin, as occurs in PEX are not needed. CF however, is characterized by lower selectivity since removes also high density lipoprotein (HDL) particles which have an antiatherogenic activity. In the 80’s, a variation of Lipid-apheresis has been developed which allows the LDL-cholesterol (LDLC) (-61%) and Lp(a) (-60%) removal from plasma through processing 3 liters of filtered plasma by means of lipid-specific thermofiltration, LDL immunoadsorption, heparin-induced LDL precipitation, LDL adsorption through dextran sulphate. More recently (90’s) the DALI®, and the Liposorber D® hemoperfusion systems, effective for apoB100- containing lipoproteins removal have been developed. All the above mentioned systems are established LDL-apheresis techniques referable to the generic definition of LDLa. However, this last definition cannot describe in an appropriate manner the removal of another highly atherogenic lipoprotein particle: the Lp(a). Thus it would be better to refer the above mentioned techniques to the wider scientific and technical concept of lipoprotein apheresis. Lipid apheresis - Lipoprotein apheresis - LDL-apheresis - Severe Dyslipidemia.