6 resultados para De Marsella a Tokio
em Scientific Open-access Literature Archive and Repository
Resumo:
This book presents research in the field of Geophysics, particularly referring to principles, applications and emerging technologies. Table of Contents: Preface pp. i-xxi Environmental Geophysics: Techniques, advantages and limitations (Pantelis Soupios and Eleni Kokinou, Department of Environmental and Natural Resources Engineering, Technological Educational Institute of Crete, Dynamics of the Ocean Floor, Helmholtz Centre for Ocean Research Kiel, Geomar)pp i-xxi Application of Innovative Geophysical Techniques in Coastal Areas (V. Di Fiore, M. Punzo, D. Tarallo, and G. Cavuoto, Institute for Marine Coastal Environment, National Research Council, Naples)pp. i-xxi Marine Geophysics of the Naples Bay (Southern Tyrrhenian sea, Italy): Principles, Applications and Emerging Technologies (Gemma Aiello and Ennio Marsella, Institute for Marine Coastal Environment, National Research Council, Naples)pp. i-xxi Oceanic Oscillation Phenomena: Relation to Synchronization and Stochastic Resonance (Shinya Shimokawa and Tomonori Matsuura, National Research Institute for Earth Science and Disaster Prevention, Univ. of Toyama)pp. i-xxi Assessment of ocean variability in the Sicily Channel from a numerical three-dimensional model using EOFs decomposition (R. Sorgente, A. Olita, A.F. Drago, A. Ribotti, L. Fazioli, and C. Tedesco, Institute for Marine Coastal Environment, National Research Council, Oristano)pp. i-xxi Monitoring Test of Crack Opening in Volcanic Tuff (Coroglio Cliff. Italy) Using Distributed Optical Fiber Sensor (A. Minardo, A. Coscetta, M. Caccavale, G. Esposito, F. Matano, M. Sacchi, R. Somma, G. Zeni, and L. Zeni, Department of Industrial and Information Eng., Second University of Naples Aversa, Institute for Marine Coastal Environment, National Research Council Naples, National Institute for Geophysics and Volcanology, Osservatorio Vesuviano Naples, Institute for Electromagnetic Sensing of the Environment, National Research Council Naples)pp. i-xxi
Resumo:
New morpho-bathymetric and tectono-stratigraphic data on Naples and Salerno Gulfs, derived from bathymetric and seismic data analysis and integrated geologic interpretation are here presented. The CUBE(Combined Uncertainty Bathymetric Estimator) method has been applied to complex morphologies, such as the Capri continental slope and the related geological structures occurring in the Salerno Gulf.The bathymetric data analysis has been carried out for marine geological maps of the whole Campania continental margin at scales ranging from 1:25.000 to 1:10.000, including focused examples in Naples and Salerno Gulfs, Naples harbour, Capri and Ischia Islands and Salerno Valley. Seismic data analysis has allowed for the correlation of main morpho-structural lineaments recognized at a regional scale through multichannel profiles with morphological features cropping out at the sea bottom, evident from bathymetry.Main fault systems in the area have been represented on a tectonic sketch map, including the master fault located northwards to the Salerno Valley half graben. Some normal faults parallel to the master fault have been interpreted from the slope map derived from bathymetric data. A complex system of antithetic faults bound two morpho-structural highs located 20km to the south of the Capri Island. Some hints of compressional reactivation of normal faults in an extensional setting involving the whole Campania continental margin have been shown from seismic interpretation.
Resumo:
The Southern Ischia canyon system has been investigated in detail through Multibeam bathymetry and Sparker seismic data and has been put in the geological framework of the deep sea depositional systems off the Campania region. The geological and geomorphological characteristics of the canyon system have been also compared with the characters of the Mediterranean submarine canyons and with the deep sea depositional systems of the Tyrrhenian sea. The Southern Ischia canyon system engraves a narrow continental shelf from Punta Imperatore to Punta San Pancrazio, being limited southwestwards from the relict volcanic edifice of the Ischia Bank. It consists of twenty-two drainage axes, whose planimetric trending has been reconstructed in a sketch morphological map realized through the geological interpretation of Multibeam bathymetry. While the eastern boundary of the canyon system is controlled by extensional tectonics, being limited by a NE-SW trending (anti-Apenninic) normal fault, its western boundary is controlled by volcanism, due to the growth of the Ischia volcanic bank. Submarine gravitational instabilities also acted in relationships to the canyon system, allowing for the individuation of large-scale creeping at the sea bottom and hummocky deposits already interpreted as debris avalanche deposits. Quaternary marine seismic sequences have been reconstructed through a densely spaced seismic grid recorded through a Sparker multitip seismic source, allowing for a detailed observation of steep erosional slopes occurring on the southern flank of the island and related deep sea depositional systems. Important implications of this study will regard the coastal monitoring and beach nourishment of the southern flank of the island, being involved by a strong erosion of marine and coastal systems.
Resumo:
The interactions between Late Quaternary volcanic and sedimentary processes in the Naples Bay, Southern Tyrrhenian sea, are here discussed through the results of the marine geological survey at the scale 1:25.000. The example of the geological map n. 465 “Isola di Procida”, herein presented, has put in evidence the stratigraphy of marine Quaternary deposits and related volcanic seismic units. The volcanic deposits cropping out in the Procida island have been explained as the result of eruptions of local eruptive centres. The geological survey carried out onshore indicates the occurrence of several pyroclastic units linked to the eruptive activity of the Ischian and Phlegrean volcanic complexes, interstratified with the products erupted by local volcanic centres. The occurrence in the pyroclastic sequences of Ischia and Procida islands of several marker horizons and their stratigraphic correlations have allowed to reconstruct the volcanological evolution of the two islands and the interactions with sedimentary processes at the scale of the whole Tyrrhenian margin. Four geological maps at the scale 1:25.000 covering the whole Naples Bay have been reconstructed based on the interpretation of marine geological and geophysical data. The stratigraphic relationships between the seismic units and the eruptive deposits have testified the activity of several monogenetic volcanic centers, whose products are interstratified with marine and continental deposits of the Late Quaternary depositional sequence.
Resumo:
Magnetic theory and application to a complex volcanic area located in Southern Italy are here discussed showing the example of the Gulf of Naples, located at Southern Italy Tyrrhenian margin. A magnetic anomaly map of the Gulf of Naples has been constructed aimed at highlighting new knowledge on geophysics and volcanology of this area of the Eastern Tyrrhenian margin, characterized by a complex geophysical setting, strongly depending on sea bottom topography. The theoretical aspects of marine magnetometry and multibeam bathymetry have been discussed. Magnetic data processing included the correction of the data for the diurnal variation, the correction of the data for the offset and the leveling of the data as a function of the correction at the cross-points of the navigation lines. Multibeam and single-beam bathymetric data processing has been considered. Magnetic anomaly fields in the Naples Bay have been discussed through a detailed geological interpretation and correlated with main morpho-structural features recognized through morphobathymetric interpretation. Details of magnetic anomalies have been selected, represented and correlated with significant seismic profiles, recorded on the same navigation lines of magnetometry. They include the continental shelf offshore the Somma-Vesuvius volcanic complex, the outer shelf of the Gulf of Pozzuoli offshore the Phlegrean Fields volcanic complex, the relict volcanic banks of Pentapalummo, Nisida and Miseno, the Gaia volcanic bank on the Naples slope, the western slope of the Dohrn canyon, the Magnaghi canyon’s head and the magnetic anomalies among the Ischia and Procida islands.
Resumo:
The geological evolution of coastal and marine environments offshore the Cilento Promontory through marine geological mapping is discussed here. The marine geological map n. 502 “Agropoli,” located offshore the Cilento Promontory (southern Italy), is described and put in regional geologic setting. The study area covers water depths ranging between 30 and 200 m isobaths. The geologic map has been constructed in the frame of a research program financed by the National Geological Survey of Italy (CARG Project), finalized to the construction of an up-to-date cartography of the Campania region. Geological and geophysical data on the continental shelf and slope offshore the southern Campania region have been acquired in an area bounded northward by the Gulf of Salerno and southward by the Gulf of Policastro. A high-resolution multibeam bathymetry has permitted the construction of a digital elevation model (DEM). Sidescan sonar profiles have also been collected and interpreted, and their merging with bathymetric data has allowed for the realization of the base for the marine geologic cartography. The calibration of geophysical data has been attempted through sea-bottom samples. The morpho-structures and the seismic sequences overlying the outcrops of acoustic basement reported in the cartographic representation have been studied in detail using single-channel seismics. The interpretation of seismic profiles has been a support for the reconstruction of the stratigraphic and structural setting of the Quaternary continental shelf successions and the outcrops of rocky acoustic basement in correspondence to the Licosa Cape morphostructural high. These areas result from the seaward prolongation of the stratigraphic and structural units, widely cropping out in the surrounding emerged sector of the Cilento Promontory. The cartographic approach is based on the recognition of laterally coeval depositional systems, interpreted in the frame of system tracts of the Late Quaternary depositional sequence.