1 resultado para visitantes florais
em Repositorio Universidad Autónoma de Manizales
Resumo:
El sector del turismo es uno de los más grandes a nivel mundial, generando 212 millones de empleos contribuyendo al PIB de muchos países. Según las estadísticas del ministerio de comercio el total de llegadas de turistas internacionales a la ciudad de Pereira es mayor que el de Armenia y Manizales, esto sin tener en cuenta los turistas que ingresaron por una frontera, datos que se han mantenido desde el año 2011 hasta la actualidad, año 2014. En el Quindío se cuenta con un observatorio de turismo el cual cada vez ha ido incorporando nuevos datos para sus estadísticas, observándose en el año 2014 que se tienen en cuenta a los actores de turismo, como lo son los prestadores de servicios hoteleros, restaurantes, artesanías, servicios de guías. La ciudad de Pereira no cuenta con un observatorio de turismo ni estudios sobre sus viajeros, las entidades encargadas del Turismo de Pereira no tienen en cuenta dicha variable ya que en sus sitios web y en su entidad no hay información recopilada sobre estos. Por esto hizo un análisis de la ciudad, para poder determinar datos estadísticos como: Procedencia de los visitantes, propósito de la visita, servicios utilizados, tipos de comidas preferidas, tipo de transporte utilizado, medio por el cual se enteraron de la ciudad, nivel de satisfacción en la ciudad, costos de la ciudad. Con los datos recopilados se realizó una segmentación y descripción de hábitos de los viajeros realizando análisis de clúster, posteriormente se clasificaron de acuerdo a tendencias y características aplicando reglas de asociación y finalmente se agruparon por el nivel de gastos, percepción y satisfacción luego de visitar la ciudad por medio de un análisis de clúster. Este proceso de extracción de conocimiento a partir de los datos KDD, utilizado actualmente por el sector empresarial, educativo y científico, se desarrolló utilizando la metodología CRISP-DM y fue implementado sobre la aplicación de uso libre RapidMiner y comprende desde la recolección de la información en línea y la extracción de información de la base de datos diseñada para tal fin, su transformación, validación, el cálculo de los clústers y las reglas de asociación.