3 resultados para Redes de computadores - Escalabilidade
em Repositorio Institucional Universidad EAFIT - Medelin - Colombia
Resumo:
In this work, we perform a first approach to emotion recognition from EEG single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology -- Single channel EEG signals are analyzed and processed using several window sizes by performing a statistical analysis over features in the time and frequency domains -- Finally, a neural network obtained an average accuracy rate of 99% of classification in two emotional states such as happiness and sadness
Resumo:
We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify
Resumo:
Stand-alone and networked surgical virtual reality based simulators have been proposed as means to train surgical skills with or without a supervisor nearby the student or trainee -- However, surgical skills teaching in medicine schools and hospitals is changing, requiring the development of new tools to focus on: (i) importance of mentors role, (ii) teamwork skills and (iii) remote training support -- For these reasons, a surgical simulator should not only allow the training involving a student and an instructor that are located remotely, but also the collaborative training of users adopting different medical roles during the training sesión -- Collaborative Networked Virtual Surgical Simulators (CNVSS) allow collaborative training of surgical procedures where remotely located users with different surgical roles can take part in the training session -- To provide successful training involving good collaborative performance, CNVSS should handle heterogeneity factors such as users’ machine capabilities and network conditions, among others -- Several systems for collaborative training of surgical procedures have been developed as research projects -- To the best of our knowledge none has focused on handling heterogeneity in CNVSS -- Handling heterogeneity in this type of collaborative sessions is important because not all remotely located users have homogeneous internet connections, nor the same interaction devices and displays, nor the same computational resources, among other factors -- Additionally, if heterogeneity is not handled properly, it will have an adverse impact on the performance of each user during the collaborative sesión -- In this document, the development of a context-aware architecture for collaborative networked virtual surgical simulators, in order to handle the heterogeneity involved in the collaboration session, is proposed -- To achieve this, the following main contributions are accomplished in this thesis: (i) Which and how infrastructure heterogeneity factors affect the collaboration of two users performing a virtual surgical procedure were determined and analyzed through a set of experiments involving users collaborating, (ii) a context-aware software architecture for a CNVSS was proposed and implemented -- The architecture handles heterogeneity factors affecting collaboration, applying various adaptation mechanisms and finally, (iii) A mechanism for handling heterogeneity factors involved in a CNVSS is described, implemented and validated in a set of testing scenarios