2 resultados para Mach-Zehnder interferometers

em Repositorio Institucional Universidad EAFIT - Medelin - Colombia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Force plate or pressure plate analysis came as an innovative tool to biomechanics and sport medicine -- This allows engineers, scientists and doctors to virtually reconstruct the way a person steps while running or walking using a measuring system and a computer -- With this information they can calculate and analyze a whole set of variables and factors that characterize the step -- Then they are able to make corrections and/or optimizations, designing appropriate shoes and insoles for the patient -- The idea is to study and understand all the hardware and software implications of this process and all the components involved, and then propose an alternative solution -- This solution should have at least similar performance to existing systems -- It should increase the accuracy and/or the sampling frequency to obtain better results -- By the end, there should be a working prototype of a pressure measuring system and a mathematical model to govern it -- The costs of the system have to be lower than most of the systems in the market

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FEA simulation of thermal metal cutting is central to interactive design and manufacturing. It is therefore relevant to assess the applicability of FEA open software to simulate 2D heat transfer in metal sheet laser cuts. Application of open source code (e.g. FreeFem++, FEniCS, MOOSE) makes possible additional scenarios (e.g. parallel, CUDA, etc.), with lower costs. However, a precise assessment is required on the scenarios in which open software can be a sound alternative to a commercial one. This article contributes in this regard, by presenting a comparison of the aforementioned freeware FEM software for the simulation of heat transfer in thin (i.e. 2D) sheets, subject to a gliding laser point source. We use the commercial ABAQUS software as the reference to compare such open software. A convective linear thin sheet heat transfer model, with and without material removal is used. This article does not intend a full design of computer experiments. Our partial assessment shows that the thin sheet approximation turns to be adequate in terms of the relative error for linear alumina sheets. Under mesh resolutions better than 10e−5 m , the open and reference software temperature differ in at most 1 % of the temperature prediction. Ongoing work includes adaptive re-meshing, nonlinearities, sheet stress analysis and Mach (also called ‘relativistic’) effects.