1 resultado para Functorial Embedding
em Repositorio Institucional Universidad EAFIT - Medelin - Colombia
Filtro por publicador
- JISC Information Environment Repository (9)
- Repository Napier (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (12)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (51)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (61)
- Boston University Digital Common (10)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (19)
- CentAUR: Central Archive University of Reading - UK (23)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (4)
- DigitalCommons - The University of Maine Research (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (6)
- Ecology and Society (1)
- eScholarship Repository - University of California (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (13)
- Helda - Digital Repository of University of Helsinki (9)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (31)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Politécnico do Porto, Portugal (5)
- Línguas & Letras - Unoeste (1)
- Massachusetts Institute of Technology (5)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (2)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (56)
- Queensland University of Technology - ePrints Archive (191)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (56)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Research Open Access Repository of the University of East London. (3)
- Royal College of Art Research Repository - Uninet Kingdom (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scielo Uruguai (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (19)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade de Madeira (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (8)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (15)
- University of Southampton, United Kingdom (2)
- University of Washington (1)
- WestminsterResearch - UK (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (4)
Resumo:
Given a 2manifold triangular mesh \(M \subset {\mathbb {R}}^3\), with border, a parameterization of \(M\) is a FACE or trimmed surface \(F=\{S,L_0,\ldots, L_m\}\) -- \(F\) is a connected subset or region of a parametric surface \(S\), bounded by a set of LOOPs \(L_0,\ldots ,L_m\) such that each \(L_i \subset S\) is a closed 1manifold having no intersection with the other \(L_j\) LOOPs -- The parametric surface \(S\) is a statistical fit of the mesh \(M\) -- \(L_0\) is the outermost LOOP bounding \(F\) and \(L_i\) is the LOOP of the ith hole in \(F\) (if any) -- The problem of parameterizing triangular meshes is relevant for reverse engineering, tool path planning, feature detection, redesign, etc -- Stateofart mesh procedures parameterize a rectangular mesh \(M\) -- To improve such procedures, we report here the implementation of an algorithm which parameterizes meshes \(M\) presenting holes and concavities -- We synthesize a parametric surface \(S \subset {\mathbb {R}}^3\) which approximates a superset of the mesh \(M\) -- Then, we compute a set of LOOPs trimming \(S\), and therefore completing the FACE \(F=\ {S,L_0,\ldots ,L_m\}\) -- Our algorithm gives satisfactory results for \(M\) having low Gaussian curvature (i.e., \(M\) being quasi-developable or developable) -- This assumption is a reasonable one, since \(M\) is the product of manifold segmentation preprocessing -- Our algorithm computes: (1) a manifold learning mapping \(\phi : M \rightarrow U \subset {\mathbb {R}}^2\), (2) an inverse mapping \(S: W \subset {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^3\), with \ (W\) being a rectangular grid containing and surpassing \(U\) -- To compute \(\phi\) we test IsoMap, Laplacian Eigenmaps and Hessian local linear embedding (best results with HLLE) -- For the back mapping (NURBS) \(S\) the crucial step is to find a control polyhedron \(P\), which is an extrapolation of \(M\) -- We calculate \(P\) by extrapolating radial basis functions that interpolate points inside \(\phi (M)\) -- We successfully test our implementation with several datasets presenting concavities, holes, and are extremely nondevelopable -- Ongoing work is being devoted to manifold segmentation which facilitates mesh parameterization