4 resultados para modelagem 2D

em Repositório Institucional da Universidade Estadual de São Paulo - UNESP


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The building budgeting quickly and accurately is a challenge faced by the companies in the sector. The cost estimation process is performed from the quantity takeoff and this process of quantification, historically, through the analysis of the project, scope of work and project information contained in 2D design, text files and spreadsheets. This method, in many cases, present itself flawed, influencing the making management decisions, once it is closely coupled to time and cost management. In this scenario, this work intends to make a critical analysis of conventional process of quantity takeoff, from the quantification through 2D designs, and with the use of the software Autodesk Revit 2016, which uses the concepts of building information modeling for automated quantity takeoff of 3D model construction. It is noted that the 3D modeling process should be aligned with the goals of budgeting. The use of BIM technology programs provides several benefits compared to traditional quantity takeoff process, representing gains in productivity, transparency and assertiveness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the high competitiveness in the industrial chemical sector, demand forecast is a relevant factor for decision-making. There is a need for tools capable of assisting in the analysis and definition of the forecast. In that sense, the objective is to generate the chemical industry forecast using an advanced forecasting model and thus verify the accuracy of the method. Because it is time series with seasonality, the model of seasonal autoregressive integrated moving average - SARIMA generated reliable forecasts and acceding to the problem analyzed, thus enabling, through validation with real data improvements in the management and decision making of supply chain

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimization of energy generation systems has become a key issue for technological and social development, mainly in developing countries, where the electricity consumption rises sharply. Gas turbine cycle is an electricity generating system, which studies have demonstrated that inlet air cooling increases net power and thermal efficiency. Thus, this study intends to quantify these parameters for environments with different ambient temperature and relative humidity. Two types of air cooling were used: evaporative and absorption systems. The configuration parameters only with the gas turbine cycle were compared to those whose configuration allowed cooling. First, it was analyzed only evaporative cooling. Next, the absorption system was used for analysis. The last configuration mixed these two methods, dividing equally its flow. The results showed that thermal efficiency and net power increase in any case of cooling, with absorption system more advantageous in terms of generated energy, where an increase between 1 and 2 MW was observed, depending on the ambient conditions . When the two methods were working together at low relative humidity, it showed a thermal efficiency increase compared to absorption system, up to 2.4%. Evaporative cooling was less effective, but it is a good and cheap possibility to increase the cycle parameters at high temperature and low relative humidity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG