3 resultados para implantação de sistemas ERP
em Repositório Institucional da Universidade Estadual de São Paulo - UNESP
Resumo:
This paper deals with the homologation process for obtaining carbon credits through the Clean Development Mechanism (CDM), that regulates the greenhouse gases reductions under the rules of the Kyoto Protocol. The CDM evaluates projects through a project cycle, which begins with the preparation of the Project Design Document (PDD) until the project certification to receive Certified Emission Reductions (CERs), popularly known as carbon credits. This study analyzed the implementation of the system Burner Recorder System for Low Flows of Biogas (QRBBV), developed by Marcelino Junior & Godoy (2009), in an eco-friendly wastewater treatment mini-plant (miniEETERA), built at the site of UNESP - Guaratinguetá SP. The QRBBV system is low cost and high reliability, developed to burn the methane generated at sites of low and variable production of biogas, which is not economically justified their energy recovery. Currently, almost all wastewater generated at the site of the campus is being treated by miniEETERA and, as a result, the biogas originated by this activity is being released into the atmosphere. Therefore, the project activity aims to capture and burn the biogas generated by miniEETERA, reducing the negative effects caused by the methane emissions into the atmosphere and, thus, claim to receive carbon credits. This work aimed to demonstrate the project applicability under CDM through the study and preparation of the PDD, as well as an analysis of the entire project cycle required for homologation. The result of the work obtained an estimate of only 20 CERs per year and proved to be economically unviable for approval through the CDM, since the spending with the approval process would not be compensated with the sale of CERs, mainly due the low carbon price in the world market. From an environmental standpoint, the project is perfectly... (Complete abstract click electronic access below)
Resumo:
Currently there are two car models that use electricity in their propulsion systems, the electric vehicle and the hybrid electric vehicle. The electric vehicles are classified as vehicles that use electric motors in their propulsion system and batteries as a power source, on the other hand, the hybrid vehicles are classified as vehicles that use both electric motors and internal combustion engines in their propulsion system, using both batteries and líquid fuels as a power source. The main goal of this work is to analyze the characteristics of electric and hybrid electric vehicles and demonstrate the unfeasibility of the electric vehicle in the current economic, political, energetic and environmental brazilian scenario, for this purpose it was realized a study about the current brazilian situation regarding to electricity generation, current conservation status of road network, lack of electrical infrastructure for charging batteries, national lithium reserves, environmental characteristics, tax incentives, economic scenario, oil market and political positioning related to the implantation of electric or hybrid electric fleets in nacional territory. The operational characteristics analysis of electric and hybrid electric vehicles in this current scenario leads to the conclusion that currently a growth of electric vehicles fleets on a national scale is totally impractical in the Brazil, Thus, the introduction of green vehicles probably will occur primarily with hybrid electric models, motivated mainly due the bigger autonomy of this models compared to electric models, lower cost of hybrid electric models compared to electric models, factors related to the lack of recharging infrastructure and also factors related to political positioning
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)