2 resultados para high reliability
em Repositório Institucional da Universidade Estadual de São Paulo - UNESP
Resumo:
This paper deals with the homologation process for obtaining carbon credits through the Clean Development Mechanism (CDM), that regulates the greenhouse gases reductions under the rules of the Kyoto Protocol. The CDM evaluates projects through a project cycle, which begins with the preparation of the Project Design Document (PDD) until the project certification to receive Certified Emission Reductions (CERs), popularly known as carbon credits. This study analyzed the implementation of the system Burner Recorder System for Low Flows of Biogas (QRBBV), developed by Marcelino Junior & Godoy (2009), in an eco-friendly wastewater treatment mini-plant (miniEETERA), built at the site of UNESP - Guaratinguetá SP. The QRBBV system is low cost and high reliability, developed to burn the methane generated at sites of low and variable production of biogas, which is not economically justified their energy recovery. Currently, almost all wastewater generated at the site of the campus is being treated by miniEETERA and, as a result, the biogas originated by this activity is being released into the atmosphere. Therefore, the project activity aims to capture and burn the biogas generated by miniEETERA, reducing the negative effects caused by the methane emissions into the atmosphere and, thus, claim to receive carbon credits. This work aimed to demonstrate the project applicability under CDM through the study and preparation of the PDD, as well as an analysis of the entire project cycle required for homologation. The result of the work obtained an estimate of only 20 CERs per year and proved to be economically unviable for approval through the CDM, since the spending with the approval process would not be compensated with the sale of CERs, mainly due the low carbon price in the world market. From an environmental standpoint, the project is perfectly... (Complete abstract click electronic access below)
Resumo:
This work presents a self-sustainable lighting system using ultracapacitor as a storage device, replacing the conventional battery, using solar energy as the only energy supplier. A detailed study of solar panels, switched mode converters and ultracapacitors was made, in order to design a circuit capable of capturing solar energy and transfer it efficiently to a bank of ultracapacitors. Later, at nighttime, this energy is used for lighting in LED luminaires which have high luminous efficiency and high reliability index. This work presents the design of the solar panel, ultracapacitors bank, the development of the voltage converter circuit and charger working at the maximum power point of the solar panel. All subsystems were simulated and it was shown that the use of ultracapacitors is feasible to feed a LED lamp with enough brightness for a person to walk at night, for two night shifts, using a capacitive bank with twenty-four ultracapacitors. Replacing the battery by an ultracapacitor allows a faster recharge, with low maintenance costs, since ultracapacitors have a lifetime bigger than batteries; beyond reducing the environmental impact, as they don't use potentially toxic chemical compounds